• Title/Summary/Keyword: Peripheral Nervous System Diseases

Search Result 45, Processing Time 0.031 seconds

Application of respiratory function tests in patients with neurological diseases

  • Ilhan Yoo;Seok-Jin Choi;Jung-Joon Sung
    • Annals of Clinical Neurophysiology
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Breathing is controlled by complex interactions between the central and peripheral nervous systems in conjunction with the respiratory system. Neurological diseases predispose patients to nocturnal desaturation and pneumonia due to respiratory dysfunction, which increases mortality, daytime sleepiness and fatigue, and reduces the quality of life. Respiratory function tests are required to identify respiratory function decline and to consider compensatory management. This review summarizes the characteristics of several respiratory function tests and their applications to neurological diseases.

R&D Trends in Bioelectronic Medicines (전자약 연구개발 동향)

  • Kim, Y.H.;Jung, S.D.;Lee, S.K.;Kim, H.J.;Byun, C.W.;Lee, J.I.;Song, K.B.;Kang, S.W.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.3
    • /
    • pp.98-110
    • /
    • 2020
  • Precise detection and modulation of electrical signal patterns passing through peripheral nerves connecting organs and brainstems, referred to as electroceuticals or bioelectronic medicines, have emerged as a new type of treatments for neural disorders and chronic diseases. With the rapid advancements in neural interface technologies, electroceuticals are the focus of treatments for these disorders or diseases. In this paper, we introduced electroceuticals as an extension of neuromodulation for the treatment of chronic diseases, such as diabetes, rheumatoid arthritis, obesity, and bladder dysfunction, without side effects that are unavoidably elicited when conventional drugs are taken. Further, this paper reviewed the anatomy of the peripheral nervous system, treatment examples for chronic diseases, technological demands for peripheral nerve interfacing, global R&D programs and market trends for electroceuticals, and prospects on electroceuticals.

A beginner's guide to peripheral nerve ultrasound

  • Seok, Jung Im
    • Annals of Clinical Neurophysiology
    • /
    • v.24 no.2
    • /
    • pp.46-52
    • /
    • 2022
  • Ultrasonography is currently being developed as a tool for evaluating peripheral neuropathy. It is one of the painless and least-invasive methods of medical diagnostic testing that yields anatomic views of the nerves and their surrounding structures. Here I first describe the equipment settings and technique for nerve ultrasound along with typical sonographic findings for normal nerves. I then address frequently used parameters for nerve measurements that facilitate diagnoses of focal and generalized neuropathies.

Neural Mechanism in Bronchial Asthma (기관지천식에서의 신경적 기전)

  • Choi, Byoung-Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.2
    • /
    • pp.73-86
    • /
    • 1994
  • In addition to classic cholinergic and adrenergic pathways, the existence of a third division of autonomic control in the human airways has been proved. It is called a nonadrenergic noncholinergic(NANC) nervous system, and difficult to study in the absence of specific blockers. Neuropeptides are certainly suggested to be transmitters of this NANC nervous system. It is very frustrating to understand the pathophysiologic role of these peptides in the absence of any specific antagonists. However, further studies of neuropeptides might eventually lead to novel forms of treatment for bronchial asthma. Another study of the interaction between different components of the autonomic nervous system, either in ganglionic neurotransmission or by presynaptic modulation of neurotransmitters at the end-organ will elute neural control in airway disease, particularly in asthma. Studies of how autonomic control may be disordered in airway disease should lead to improvements in clinical management. Epithelial damage due to airway inflammation in asthma may induce bronchial hyperresponsiveness. Axon reflex mechanism is one of possible mechanisms in bronchial hyperresponsiveness. Epithelial damage may expose sensory nerve terminals and C-fiber nrve endings are stimulated by inflammatory mediators. Bi-directional communication between the nerves and mast cells may have important roles in allergic process. The psychological factors and conditioning of allergic reactions is suggested that mast cell activation might be partly regulated by the central nervous system via the peripheral nerves. Studies in animal models, in huamn airways in vitro and in patients with airway disease will uncover the interaction between allergic disease processes and psychologic factors or neural mechainsms.

  • PDF

A potential role of Schwann cells in spinal nerve roots in autoimmune central nervous system diseases

  • Moon, Changjong;Lee, Yongduk;Shin, Taekyun
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.4
    • /
    • pp.483-486
    • /
    • 2004
  • The expression of nestin and vimentin in the spinal nerve roots of rats with experimental autoimmune encephalomyelitis (EAE) was studied to ascertain whether Schwann cells in the peripheral nerves respond to acute central nervous system autoimmune injury. Immunohistochemistry demonstrated that nestin was constitutively expressed in the dorsal roots of spinal nerves in control rats; its expression was enhanced in the spinal nerve roots of rats with EAE. Vimentin expression was weak in control rat spinal nerve roots, and it was increased in the dorsal roots of rats with EAE. It is postulated that normal animals have multipotent progenitor cells that constitutively express nestin and vimentin in the spinal nerve roots. In response to an injury of the central nervous system, these multipotent Schwann cells are activated in the spinal nerve roots through the expression of the intermediate filament proteins vimentin and nestin.

Etiology and Mechanism of Neuropathic Pain (일반적인 신경병성 통증의 원인 및 기전)

  • Lim, Hyun-Dae
    • The Journal of the Korean dental association
    • /
    • v.49 no.6
    • /
    • pp.321-326
    • /
    • 2011
  • Neuropathic pain is caused by functional abnonnalities of structural lesions in the peripheral or central nervous system, and occurs without peripheral nociceptor stimulation. Trigeminal neuropathy always pose differential location difficulties as multiple diseases are capablc of producing them: they can be the result of traumatism, tumors, or diseases of the connective tissue, infectious or demyelinating diseases, or may be of idiopathic origin. There are a number of mechanisms described as causing neuropathy. They can be described as ectopic nerve activity, neuroma, ephatic trasmission, change of sodium channel expression, sympathetic activity, central sensitization, and alteration in central inhibition systems. More than I mechanism may be active to create individual clinical presentations. In order to provide better pain control, the mechanism-based approach in treating neuropathic pain should be familiar to physicians.

Immobilization-induced rhabdomyolysis patients with peripheral neuropathy: clinical, laboratory and imaging findings

  • Seok, Jung Im;Lee, In Hee;Ahn, Ki Sung;Kang, Gun Woo;Lee, Je Wan;Kwak, Sanggyu
    • Annals of Clinical Neurophysiology
    • /
    • v.22 no.1
    • /
    • pp.19-23
    • /
    • 2020
  • Background: Peripheral nerve injury rarely occurs in patients with rhabdomyolysis. Based on our experience and previous reports, we consider prolonged immobilization a risk factor for the development of peripheral neuropathy in rhabdomyolysis patients. Methods: This study analyzed 28 patients with rhabdomyolysis due to prolonged immobilization. We analyzed their demographic and laboratory data, clinical and imaging findings, and outcomes, and compared these factors between patients with and without neuropathy. Results: Seven of the 28 patients had peripheral neuropathy, including sciatic neuropathy or lumbosacral plexopathy. Compared to those without neuropathy, the patients with neuropathy were younger (p = 0.02), had higher peak creatine kinase (CK) levels (p = 0.02), had higher muscle uptake in bone scans (p = 0.03), and more frequently exhibited abnormal muscle findings in computed tomography (CT) (p = 0.004). Conclusions: Patients with prolonged immobilization-induced rhabdomyolysis and neuropathy had higher CK levels, increased uptake on bone scans, and more-frequent abnormal muscles on CT than those without neuropathy. These findings indicate that peripheral neuropathy is more likely to develop in patients with severe muscle injury.

Regulation of Systemic Energy Homeostasis by Peripheral Serotonin

  • Namkung, Jun;Oh, Chang-Myung;Park, Sangkyu;Kim, Hail
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.2 no.2
    • /
    • pp.43-45
    • /
    • 2016
  • Whole body energy balance is achieved through the coordinated regulation of energy intake and energy expenditure in various tissues including liver, muscle and adipose tissues. A positive energy imbalance by excessive energy intake or insufficient energy expenditure results in obesity and related metabolic diseases. Although there have been many obesity treatment trials aimed at the reduction of energy intake, these strategies have achieved only limited success because of their associated adverse effects. Serotonin is among those traditional pharmacological targets for anti-obesity treatment because central 5-HT functions as an anorexigenic neurotransmitter in the brain. Thus, there have been many trials aimed at increasing the activity of 5-HT in the central nervous system, and some of the developed methods are already used in the clinical setting as anti-obesity drugs. However, recent studies suggest the new functions of peripheral serotonin in energy homeostasis ranging from the endocrine regulation by gut-derived serotonin to the autocrine/paracrine regulation by adipocyte-derived serotonin. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Fat specific Tph1 knock-out (Tph1 FKO) mice exhibit similar phenotypes as mice with pharmacological inhibition of 5-HT synthesis, suggesting the localized effects of 5-HT in adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure in BAT and Htr2a KO mice exhibit the decreased lipid accumulation in WAT. These data suggest the clinical significance of the peripheral serotonergic system as a new therapeutic target for anti-obesity treatment.

Glia as a Link between Neuroinflammation and Neuropathic Pain

  • Jha, Mithilesh Kumar;Jeon, Sang-Min;Suk, Kyoung-Ho
    • IMMUNE NETWORK
    • /
    • v.12 no.2
    • /
    • pp.41-47
    • /
    • 2012
  • Contemporary studies illustrate that peripheral injuries activate glial components of the peripheral and central cellular circuitry. The subsequent release of glial stressors or activating signals contributes to neuropathic pain and neuroinflammation. Recent studies document the importance of glia in the development and persistence of neuropathic pain and neuroinflammation as a connecting link, thereby focusing attention on the glial pathology as the general underlying factor in essentially all age-related neurodegenerative diseases. There is wide agreement that excessive glial activation is a key process in nervous system disorders involving the release of strong pro-inflammatory cytokines, which can trigger worsening of multiple disease states. This review will briefly discuss the recent findings that have shed light on the molecular and cellular mechanisms of glia as a connecting link between neuropathic pain and neuroinflammation.

Antinociceptive role of neurotensin receptor 1 in rats with chemotherapy-induced peripheral neuropathy

  • Yin, Mei;Kim, Yeo-Ok;Choi, Jeong-Il;Jeong, Seongtae;Yang, Si-Ho;Bae, Hong-Beom;Yoon, Myung-Ha
    • The Korean Journal of Pain
    • /
    • v.33 no.4
    • /
    • pp.318-325
    • /
    • 2020
  • Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect of anti-cancer drugs. Neurotensin receptors (NTSRs) are widely distributed within the pain circuits in the central nervous system. The purpose of this study was to determine the role of NTSR1 by examining the effects of an NTSR1 agonist in rats with CIPN and investigate the contribution of spinal serotonin receptors to the antinociceptive effect. Methods: Sprague-Dawley rats (weight 150-180 g) were used in this study. CIPN was induced by injecting cisplatin (2 mg/kg) once a day for 4 days. Intrathecal catheters were placed into the subarachnoid space of the CIPN rats. The antiallodynic effects of intrathecally or intraperitoneally administered PD 149163, an NTSR1 agonist, were evaluated. Furthermore, the levels of serotonin in the spinal cord were measured by high-performance liquid chromatography. Results: Intrathecal or intraperitoneal PD 149163 increased the paw withdrawal threshold in CIPN rats. Intrathecal administration of the NTSR1 antagonist SR 48692 suppressed the antinociceptive effect of PD 149163 given via the intrathecal route, but not the antinociceptive effect of intraperitoneally administered PD 149163. Intrathecal administration of dihydroergocristine, a serotonin receptor antagonist, suppressed the antinociceptive effect of intrathecally administered, but not intraperitoneally administered, PD 149163. Injecting cisplatin diminished the serotonin level in the spinal cord, but intrathecal or intraperitoneal administration of PD 149163 did not affect this reduction. Conclusions: NTSR1 played a critical role in modulating CIPN-related pain. Therefore, NTSR1 agonists may be useful therapeutic agents to treat CIPN. In addition, spinal serotonin receptors may be indirectly involved in the effect of NTSR1 agonist.