• Title/Summary/Keyword: SR 48692

Search Result 2, Processing Time 0.021 seconds

Antinociceptive role of neurotensin receptor 1 in rats with chemotherapy-induced peripheral neuropathy

  • Yin, Mei;Kim, Yeo-Ok;Choi, Jeong-Il;Jeong, Seongtae;Yang, Si-Ho;Bae, Hong-Beom;Yoon, Myung-Ha
    • The Korean Journal of Pain
    • /
    • v.33 no.4
    • /
    • pp.318-325
    • /
    • 2020
  • Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect of anti-cancer drugs. Neurotensin receptors (NTSRs) are widely distributed within the pain circuits in the central nervous system. The purpose of this study was to determine the role of NTSR1 by examining the effects of an NTSR1 agonist in rats with CIPN and investigate the contribution of spinal serotonin receptors to the antinociceptive effect. Methods: Sprague-Dawley rats (weight 150-180 g) were used in this study. CIPN was induced by injecting cisplatin (2 mg/kg) once a day for 4 days. Intrathecal catheters were placed into the subarachnoid space of the CIPN rats. The antiallodynic effects of intrathecally or intraperitoneally administered PD 149163, an NTSR1 agonist, were evaluated. Furthermore, the levels of serotonin in the spinal cord were measured by high-performance liquid chromatography. Results: Intrathecal or intraperitoneal PD 149163 increased the paw withdrawal threshold in CIPN rats. Intrathecal administration of the NTSR1 antagonist SR 48692 suppressed the antinociceptive effect of PD 149163 given via the intrathecal route, but not the antinociceptive effect of intraperitoneally administered PD 149163. Intrathecal administration of dihydroergocristine, a serotonin receptor antagonist, suppressed the antinociceptive effect of intrathecally administered, but not intraperitoneally administered, PD 149163. Injecting cisplatin diminished the serotonin level in the spinal cord, but intrathecal or intraperitoneal administration of PD 149163 did not affect this reduction. Conclusions: NTSR1 played a critical role in modulating CIPN-related pain. Therefore, NTSR1 agonists may be useful therapeutic agents to treat CIPN. In addition, spinal serotonin receptors may be indirectly involved in the effect of NTSR1 agonist.

Validation of Neurotensin Receptor 1 as a Therapeutic Target for Gastric Cancer

  • Akter, Hafeza;Yoon, Jung Hwan;Yoo, Young Sook;Kang, Min-Jung
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.591-602
    • /
    • 2018
  • Gastric cancer is the fifth most common type of malignancy worldwide, and the survival rate of patients with advanced-stage gastric cancer is low, even after receiving chemotherapy. Here, we validated neurotensin receptor 1 (NTSR1) as a potential therapeutic target in gastric cancer. We compared NTSR1 expression levels in sixty different gastric cancer-tissue samples and cells, as well as in other cancer cells (lung, breast, pancreatic, and colon), by assessing NTSR1 expression via semi-quantitative real-time reverse transcription polymerase chain reaction, immunocytochemistry and western blot. Following neurotensin (NT) treatment, we analyzed the expression and activity of matrix metalloproteinase-9 (MMP-9) and further determined the effects on cell migration and invasion via wound-healing and transwell assays. Our results revealed that NTSR1 mRNA levels were higher in gastric cancer tissues than non-cancerous tissues. Both of NTSR1 mRNA levels and expression were higher in gastric cancer cell lines relative to levels observed in other cancer-cell lines. Moreover, NT treatment induced MMP-9 expression and activity in all cancer cell lines, which was significantly decreased following treatment with the NTSR1 antagonist SR48692 or small-interfering RNA targeting NTSR1. Furthermore, NT-mediated metastases was confirmed by observing epithelial-mesenchymal transition markers SNAIL and E-cadherin in gastric cancer cells. NT-mediated invasion and migration of gastric cancer cells were reduced by NTSR1 depletion through the Erk signaling. These findings strongly suggested that NTR1 constitutes a potential therapeutic target for the inhibition of gastric cancer invasion and metastasis.