DOI QR코드

DOI QR Code

Regulator of Calcineurin (RCAN): Beyond Down Syndrome Critical Region

  • Lee, Sun-Kyung (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Ahnn, Joohong (Department of Life Science, College of Natural Sciences, Hanyang University)
  • 투고 : 2020.03.06
  • 심사 : 2020.05.25
  • 발행 : 2020.08.31

초록

The regulator of calcineurin (RCAN) was first reported as a novel gene called DSCR1, encoded in a region termed the Down syndrome critical region (DSCR) of human chromosome 21. Genome sequence comparisons across species using bioinformatics revealed three members of the RCAN gene family, RCAN1, RCAN2, and RCAN3, present in most jawed vertebrates, with one member observed in most invertebrates and fungi. RCAN is most highly expressed in brain and striated muscles, but expression has been reported in many other tissues, as well, including the heart and kidneys. Expression levels of RCAN homologs are responsive to external stressors such as reactive oxygen species, Ca2+, amyloid β, and hormonal changes and upregulated in pathological conditions, including Alzheimer's disease, cardiac hypertrophy, diabetes, and degenerative neuropathy. RCAN binding to calcineurin, a Ca2+/calmodulin-dependent phosphatase, inhibits calcineurin activity, thereby regulating different physiological events via dephosphorylation of important substrates. Novel functions of RCANs have recently emerged, indicating involvement in mitochondria homeostasis, RNA binding, circadian rhythms, obesity, and thermogenesis, some of which are calcineurin-independent. These developments suggest that besides significant contributions to DS pathologies and calcineurin regulation, RCAN is an important participant across physiological systems, suggesting it as a favorable therapeutic target.

키워드

참고문헌

  1. Antonarakis, S.E. (2017). Down syndrome and the complexity of genome dosage imbalance. Nat. Rev. Genet. 18, 147-163. https://doi.org/10.1038/nrg.2016.154
  2. Antonarakis, S.E., Lyle, R., Dermitzakis, E.T., Reymond, A., and Deutsch, S. (2004). Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nat. Rev. Genet. 5, 725-738. https://doi.org/10.1038/nrg1448
  3. Bassett, J.H.D., Logan, J.G., Boyde, A., Cheung, M.S., Evans, H., Croucher, P., Sun, X., Xu, S., Murata, Y., and Williams, G.R. (2012). Mice lacking the calcineurin inhibitor Rcan2 have an isolated defect of osteoblast function. Endocrinology 153, 3537-3548. https://doi.org/10.1210/en.2011-1814
  4. Bouret, S., Levin, B.E., and Ozanne, S.E. (2015). Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol. Rev. 95, 47-82. https://doi.org/10.1152/physrev.00007.2014
  5. Bray, M.S., Shaw, C.A., Moore, M.W.S., Garcia, R.A.P., Zanquetta, M.M., Durgan, D.J., Jeong, W.J., Tsai, J.Y., Bugger, H., Zhang, D., et al. (2008). Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am. J. Physiol. Heart. Circ. Physiol. 294, H1036-H1047. https://doi.org/10.1152/ajpheart.01291.2007
  6. Bray, M.S. and Young, M.E. (2008). Diurnal variations in myocardial metabolism. Cardiovasc. Res. 79, 228-237. https://doi.org/10.1093/cvr/cvn054
  7. Burkewitz, K., Morantte, I., Weir, H.J.M., Yeo, R., Zhang, Y., Huynh, F.K., Ilkayeva, O.R., Hirschey, M.D., Grant, A.R., and Mair, W.B. (2015). Neuronal CRTC-1 governs systemic mitochondrial metabolism and lifespan via a catecholamine signal. Cell 160, 842-855. https://doi.org/10.1016/j.cell.2015.02.004
  8. Canaider, S., Facchin, F., Griffoni, C., Casadei, R., Vitale, L., Lenzi, L., Frabetti, F., D'Addabbo, P., Carinci, P., Zannotti, M., et al. (2006). Proteins encoded by human Down syndrome critical region gene 1-like 2 (DSCR1L2) mRNA and by a novel DSCR1L2 mRNA isoform interact with cardiac troponin I (TNNI3). Gene 372, 128-136. https://doi.org/10.1016/j.gene.2005.12.029
  9. Canaider, S., Vettraino, M., Norling, L.V., Spisni, E., Facchin, F., Cooper, D., and Perretti, M. (2010). Human RCAN3 gene expression and cell growth in endothelial cells. Int. J. Mol. Med. 26, 913-918.
  10. Cao, X., Kambe, F., Miyazaki, T., Sarkar, D., Ohmori, S., and Seo, H. (2002). Novel human ZAKI-4 isoforms: hormonal and tissue-specific regulation and function as calcineurin inhibitors. Biochem. J. 367, 459-466. https://doi.org/10.1042/bj20011797
  11. Chang, K.T. and Min, K.T. (2005). Drosophila melanogaster homolog of Down syndrome critical region 1 is critical for mitochondrial function. Nat. Neurosci. 8, 1577-1585. https://doi.org/10.1038/nn1564
  12. Chang, K.T., Shi, Y.J., and Min, K.T. (2003). The Drosophila homolog of Down's syndrome critical region 1 gene regulates learning: implications for mental retardation. Proc. Natl. Acad. Sci. U. S. A. 100, 15794-15799. https://doi.org/10.1073/pnas.2536696100
  13. Chen, X., Hu, Y., Wang, S., and Sun, X. (2017). The regulator of calcineurin 1 (RCAN1) inhibits nuclear factor kappaB signaling pathway and suppresses human malignant glioma cells growth. Oncotarget 8, 12003-12012. https://doi.org/10.18632/oncotarget.14479
  14. Choi, C., Kim, T., Chang, K.T., and Min, K. (2019). DSCR 1-mediated TET 1 splicing regulates miR-124 expression to control adult hippocampal neurogenesis. EMBO J. 38, e101293.
  15. Crawford, D.R., Leahy, K.P., Abramova, N., Lan, L., Wang, Y., and Davies, K.J.A. (1997). Hamster adapt78 mRNA is a Down syndrome critical region homologue that is inducible by oxidative stress. Arch. Biochem. Biophys. 342, 6-12. https://doi.org/10.1006/abbi.1997.0109
  16. Cunningham, K.W. and Fink, G.R. (1994). Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J. Cell Biol. 124, 351-363. https://doi.org/10.1083/jcb.124.3.351
  17. Cunningham, K.W. and Fink, G.R. (1996). Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2226-2237. https://doi.org/10.1128/MCB.16.5.2226
  18. Dahoun, S., Gagos, S., Gagnebin, M., Gehrig, C., Burgi, C., Simon, F., Vieux, C., Extermann, P., Lyle, R., Morris, M.A., et al. (2008). Monozygotic twins discordant for trisomy 21 and maternal 21q inheritance: a complex series of events. Am. J. Med. Genet. A 146A, 2086-2093. https://doi.org/10.1002/ajmg.a.32431
  19. Davies, K.J.A., Ermak, G., Rothermel, B.A., Pritchard, M., Heitman, J., Ahnn, J., Henrique-Silva, F., Crawford, D., Canaider, S., Strippoli, P., et al. (2007). Renaming the DSCR1 /Adapt78 gene family as RCAN: regulators of calcineurin. FASEB J. 21, 3023-3028. https://doi.org/10.1096/fj.06-7246com
  20. Delabar, J.M., Theophile, D., Rahmani, Z., Chettouh, Z., Blouin, J.L., Prieur, M., Noel, B., and Sinet, P.M. (1993). Molecular mapping of twenty-four features of Down syndrome on chromosome 21. Eur. J. Hum. Genet. 1, 114-124. https://doi.org/10.1159/000472398
  21. Deutsch, S., Lyle, R., Dermitzakis, E.T., Attar, H., Subrahmanyan, L., Gehrig, C., Parand, L., Gagnebin, M., Rougemont, J., Jongeneel, C.V., et al. (2005). Gene expression variation and expression quantitative trait mapping of human chromosome 21 genes. Hum. Mol. Genet. 14, 3741-3749. https://doi.org/10.1093/hmg/ddi404
  22. Dolmetsch, R.E., Lewis, R.S., Goodnow, C.C., and Healy, J.I. (1997). Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855-858. https://doi.org/10.1038/386855a0
  23. Durgan, D.J., Pulinilkunnil, T., Villegas-Montoya, C., Garvey, M.E., Frangogiannis, N.G., Michael, L.H., Chow, C.W., Dyck, J.R.B., and Young, M.E. (2010). Short communication: ischemia/reperfusion tolerance is timeof-day- dependent: mediation by the cardiomyocyte circadian clock. Circ. Res. 106, 546-550. https://doi.org/10.1161/CIRCRESAHA.109.209346
  24. Ejima, A., Tsuda, M., Takeo, S., Ishii, K., Matsuo, T., and Aigaki, T. (2004). Expression level of sarah, a homolog of DSCR1, is critical for ovulation and female courtship behavior in Drosophila melanogaster. Genetics 168, 2077-2087. https://doi.org/10.1534/genetics.104.029934
  25. Ermak, G. and Davies, K.J.A. (2013). Chronic high levels of the RCAN1-1 protein may promote neurodegeneration and Alzheimer disease. Free Radic. Biol. Med. 62, 47-51. https://doi.org/10.1016/j.freeradbiomed.2013.01.016
  26. Ermak, G., Harris, C.D., Battocchio, D., and Davies, K.J.A. (2006). RCAN1 (DSCR1 or Adapt78) stimulates expression of GSK-3beta. FEBS J. 273, 2100-2109. https://doi.org/10.1111/j.1742-4658.2006.05217.x
  27. Facchin, F., Canaider, S., Vitale, L., Frabetti, F., Griffoni, C., Lenzi, L., Casadei, R., and Strippoli, P. (2008). Identification and analysis of human RCAN3 (DSCR1L2) mRNA and protein isoforms. Gene 407, 159-168. https://doi.org/10.1016/j.gene.2007.10.006
  28. Facchin, F., Vitale, L., Bianconi, E., Piva, F., Frabetti, F., Strippoli, P., Casadei, R., Pelleri, M.C., Piovesan, A., and Canaider, S. (2011). Complexity of bidirectional transcription and alternative splicing at human RCAN3 locus. PLoS One 6, e24508. https://doi.org/10.1371/journal.pone.0024508
  29. FitzPatrick, D.R., Ramsay, J., McGill, N.I., Shade, M., Carothers, A.D., and Hastie, N.D. (2002). Transcriptome analysis of human autosomal trisomy. Hum. Mol. Genet. 11, 3249-3256. https://doi.org/10.1093/hmg/11.26.3249
  30. Fox, D.S. and Heitman, J. (2005). Calcineurin-binding protein Cbp1 directs the specificity of calcineurin-dependent hyphal elongation during mating in Cryptococcus neoformans. Eukaryot. Cell 4, 1526-1538. https://doi.org/10.1128/EC.4.9.1526-1538.2005
  31. Fuentes, J.J., Genesca, L., Kingsbury, T.J., Cunningham, K.W., Perez-Riba, M., Estivill, X., and de la Luna, S. (2000). DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. Hum. Mol. Genet. 9, 1681-1690. https://doi.org/10.1093/hmg/9.11.1681
  32. Fuentes, J.J., Pritchard, M.A., and Estivill, X. (1997). Genomic organization, alternative splicing, and expression patterns of the DSCR1 (Down syndrome candidate region 1) gene. Genomics 44, 358-361. https://doi.org/10.1006/geno.1997.4866
  33. Fuentes, J.J., Pritchard, M.A., Planas, A.M., Bosch, A., Ferrer, I., and Estivill, X. (1995). A new human gene from the Down syndrome critical region encodes a proline-rich protein highly expressed in fetal brain and heart. Hum. Mol. Genet. 4, 1935-1944. https://doi.org/10.1093/hmg/4.10.1935
  34. Genesca, L., Aubareda, A., Fuentes, J.J., Estivill, X., De La Luna, S., and Perez-Riba, M. (2003). Phosphorylation of calcipressin 1 increases its ability to inhibit calcineurin and decreases calcipressin half-life. Biochem. J. 374, 567-575. https://doi.org/10.1042/bj20030267
  35. Gorlach, J., Fox, D.S., Cutler, N.S., Cox, G.M., Perfect, J.R., and Heitman, J. (2000). Identification and characterization of a highly conserved calcineurin binding protein, CBP1/calcipressin, in Cryptococcus neoformans. EMBO J. 19, 3618-3629. https://doi.org/10.1093/emboj/19.14.3618
  36. Grabner, A., Amaral, A.P., Schramm, K., Singh, S., Sloan, A., Yanucil, C., Li, J., Shehadeh, L.A., Hare, J.M., David, V., et al. (2015). Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab. 22, 1020-1032. https://doi.org/10.1016/j.cmet.2015.09.002
  37. Grossman, T.R., Gamliel, A., Wessells, R.J., Taghli-Lamallem, O., Jepsen, K., Ocorr, K., Korenberg, J.R., Peterson, K.L., Rosenfeld, M.G., Bodmer, R., et al. (2011). Over-expression of DSCAM and COL6A2 cooperatively generates congenital heart defects. PLoS Genet. 7, e1002344. https://doi.org/10.1371/journal.pgen.1002344
  38. Han, K., Chen, H., Gennarino, V.A., Richman, R., Lu, H.C., and Zoghbi, H.Y. (2015). Fragile X-like behaviors and abnormal cortical dendritic spines in cytoplasmic FMR1-interacting protein 2-mutant mice. Hum. Mol. Genet. 24, 1813-1823. https://doi.org/10.1093/hmg/ddu595
  39. Han, K.A., Kang, H.S., Lee, J.W., Yoo, L., Im, E., Hong, A., Lee, Y.J., Shin, W.H., and Chung, K.C. (2014). Histone deacetylase 3 promotes RCAN1 stability and nuclear translocation. PLoS One 9, e105416. https://doi.org/10.1371/journal.pone.0105416
  40. Harris, C.D., Ermak, G., and Davies, K.J.A. (2005). Multiple roles of the DSCR1 (Adapt78 or RCAN1) gene and its protein product Calcipressin 1 (or RCAN1) in disease. Cell. Mol. Life Sci. 62, 2477-2486. https://doi.org/10.1007/s00018-005-5085-4
  41. Hattori, Y., Sentani, K., Shinmei, S., Oo, H.Z., Hattori, T., Imai, T., Sekino, Y., Sakamoto, N., Oue, N., Niitsu, H., et al. (2019). Clinicopathological significance of RCAN2 production in gastric carcinoma. Histopathology 74, 430-442. https://doi.org/10.1111/his.13764
  42. Heisel, O., Heisel, R., Balshaw, R., and Keown, P. (2004). New onset diabetes mellitus in patients receiving calcineurin inhibitors: a systematic review and meta-analysis. Am. J. Transplant. 4, 583-595. https://doi.org/10.1046/j.1600-6143.2003.00372.x
  43. Heit, J.J. (2007). Calcineurin/NFAT signaling in the ${\beta}$-cell: from diabetes to new therapeutics. BioEssays 29, 1011-1021. https://doi.org/10.1002/bies.20644
  44. Helguera, P., Seiglie, J., Rodriguez, J., Hanna, M., Helguera, G., and Busciglio, J. (2013). Adaptive downregulation of mitochondrial function in down syndrome. Cell Metab. 17, 132-140. https://doi.org/10.1016/j.cmet.2012.12.005
  45. Hirakawa, Y., Nary, L.J., and Medh, R.D. (2009). Glucocorticoid evoked upregulation of RCAN1-1 in human leukemic CEM cells susceptible to apoptosis. J. Mol. Signal. 4, 6. https://doi.org/10.1186/1750-2187-4-6
  46. Hoeffer, C.A., Dey, A., Sachan, N., Wong, H., Patterson, R.J., Shelton, J.M., Richardson, J.A., Klann, E., and Rothermel, B.A. (2007). The Down syndrome critical region protein RCAN1 regulates long-term potentiation and memory via inhibition of phosphatase signaling. J. Neurosci. 27, 13161-13172. https://doi.org/10.1523/JNEUROSCI.3974-07.2007
  47. Horner, V.L., Czank, A., Jang, J.K., Singh, N., Williams, B.C., Puro, J., Kubli, E., Hanes, S.D., McKim, K.S., Wolfner, M.F., et al. (2006). The Drosophila calcipressin sarah is required for several aspects of egg activation. Curr. Biol. 16, 1441-1446. https://doi.org/10.1016/j.cub.2006.06.024
  48. Hu, J., Bae, Y.K., Knobel, K.M., and Barr, M.M. (2006). Casein kinase II and calcineurin modulate TRPP function and ciliary localization. Mol. Biol. Cell 17, 2200-2211. https://doi.org/10.1091/mbc.e05-10-0935
  49. Jeong, S. (2017). Molecular and cellular basis of neurodegeneration in Alzheimer's disease. Mol. Cells 40, 613-620. https://doi.org/10.14348/molcells.2017.0096
  50. Jiang, H., Zhang, C., Tang, Y., Zhao, J., Wang, T., Liu, H., and Sun, X. (2017). The regulator of calcineurin 1 increases adenine nucleotide translocator 1 and leads to mitochondrial dysfunctions. J. Neurochem. 140, 307-319. https://doi.org/10.1111/jnc.13900
  51. Johnson, M.B., De Franco, E., Greeley, S., Letourneau, L.R., Gillespie, K.M., International DS-PNDM Consortium, Wakeling, M.N., Ellard, S., Flanagan, S.E., Patel, K.A., et al. (2019). Trisomy 21 is a cause of permanent neonatal diabetes that is autoimmune but not HLA associated. Diabetes 68, 1528-1535. https://doi.org/10.2337/db19-0045
  52. Kim, S.S., Oh, Y., Chung, K.C., and Seo, S.R. (2012). Protein kinase A phosphorylates Down syndrome critical region 1 (RCAN1). Biochem. Biophys. Res. Commun. 418, 657-661. https://doi.org/10.1016/j.bbrc.2012.01.071
  53. Kingsbury, T.J. and Cunningham, K.W. (2000). A conserved family of calcineurin regulators. Genes Dev. 14, 1595-1604.
  54. Korenberg, J.R., Kawashima, H., Pulst, S.M., Ikeuchi, T., Ogasawara, N., Yamamoto, K., Schonberg, S.A., West, R., Allen, L., Magenis, E., et al. (1990). Molecular definition of a region of chromosome 21 that causes features of the Down syndrome phenotype. Am. J. Hum. Genet. 47, 236-246.
  55. Kurabayashi, N. and Sanada, K. (2013). Increased dosage of DYRK1A and DSCR1 delays neuronal differentiation in neocortical progenitor cells. Genes Dev. 27, 2708-2721. https://doi.org/10.1101/gad.226381.113
  56. Lane, A.A., Chapuy, B., Lin, C.Y., Tivey, T., Li, H., Townsend, E.C., van Bodegom, D., Day, T.A., Wu, S.C., Liu, H., et al. (2014). Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation. Nat. Genet. 46, 618-623. https://doi.org/10.1038/ng.2949
  57. Leahy, K.P. and Crawford, D.R. (2000). adapt78 protects cells against stress damage and suppresses cell growth. Arch. Biochem. Biophys. 379, 221-228. https://doi.org/10.1006/abbi.2000.1897
  58. Lee, E.J., Lee, J.Y., Seo, S.R., and Chung, K.C. (2007). Overexpression of DSCR1 blocks zinc-induced neuronal cell death through the formation of nuclear aggregates. Mol. Cell. Neurosci. 35, 585-595. https://doi.org/10.1016/j.mcn.2007.05.003
  59. Lee, J.I., Dhakal, B.K., Lee, J., Bandyopadhyay, J., Jeong, S.Y., Eom, S.H., Kim, D.H., and Ahnn, J. (2003). The Caenorhabditis elegans homologue of Down syndrome critical region 1, RCN-1, inhibits multiple functions of the phosphatase calcineurin. J. Mol. Biol. 328, 147-156. https://doi.org/10.1016/S0022-2836(03)00237-7
  60. Lee, Y., Kang, H., Jin, C., Zhang, Y., Kim, Y., and Han, K. (2019). Transcriptome analyses suggest minimal effects of Shank3 dosage on directional gene expression changes in the mouse striatum. Anim. Cells Syst. (Seoul) 23, 270-274. https://doi.org/10.1080/19768354.2019.1595142
  61. Leifheit-Nestler, M., Richter, B., Basaran, M., Nespor, J., Vogt, I., Alesutan, I., Voelkl, J., Lang, F., Heineke, J., Krick, S., et al. (2018). Impact of altered mineral metabolism on pathological cardiac remodeling in elevated fibroblast growth factor 23. Front. Endocrinol. (Lausanne) 9, 333. https://doi.org/10.3389/fendo.2018.00333
  62. Letourneau, A., Santoni, F.A., Bonilla, X., Sailani, M.R., Gonzalez, D., Kind, J., Chevalier, C., Thurman, R., Sandstrom, R.S., Hibaoui, Y., et al. (2014). Domains of genome-wide gene expression dysregulation in Down’s syndrome. Nature 508, 345-350. https://doi.org/10.1038/nature13200
  63. Li, H., Zhang, W., Zhong, F., Das, G.C., Xie, Y., Li, Z., Cai, W., Jiang, G., Choi, J., Sidani, M., et al. (2018). Epigenetic regulation of RCAN1 expression in kidney disease and its role in podocyte injury. Kidney Int. 94, 1160-1176. https://doi.org/10.1016/j.kint.2018.07.023
  64. Li, W., Bell, H.W., Ahnn, J., and Lee, S.K. (2015). Regulator of calcineurin (RCAN-1) regulates thermotaxis behavior in caenorhabditis elegans. J. Mol. Biol. 427, 3457-3468. https://doi.org/10.1016/j.jmb.2015.07.017
  65. Li, W., Choi, T.W., Ahnn, J., and Lee, S.K. (2016). Allele-specific phenotype suggests a possible stimulatory activity of RCAN-1 on calcineurin in Caenorhabditis elegans. Mol. Cells 39, 827-833. https://doi.org/10.14348/molcells.2016.0222
  66. Liu, E.S., Thoonen, R., Petit, E., Yu, B., Buys, E.S., Scherrer-Crosbie, M., and Demay, M.B. (2018). Increased circulating FGF23 does not lead to cardiac hypertrophy in the male Hyp mouse model of XLH. Endocrinology 159, 2165-2172. https://doi.org/10.1210/en.2018-00174
  67. Liu, X., Zhao, D., Qin, L., Li, J., and Zeng, H. (2008). Transcription enhancer factor 3 (TEF3) mediates the expression of Down syndrome candidate region 1 isoform 1 (DSCR1-1L) in endothelial cells. J. Biol. Chem. 283, 34159-34167. https://doi.org/10.1074/jbc.M806338200
  68. Lopez-Vilella, R., Sanchez-Lazaro, I.J., Martinez-Dolz, L., Almenar-Bonet, L., Marques-Sule, E., Melero-Ferrer, J., Portoles-Sanz, M., Rivera-Otero, M., Domingo-Valero, D., and Montero-Argudo, A. (2015). Incidence of development of obesity after heart transplantation according to the calcineurin inhibitor. Transplant. Proc. 47, 127-129. https://doi.org/10.1016/j.transproceed.2014.11.025
  69. Lupien, S.J., de Leon, M., de Santi, S., Convit, A., Tarshish, C., Nair, N.P.V., Thakur, M., McEwen, B.S., Hauger, R.L., and Meaney, M.J. (1998). Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat. Neurosci. 1, 69-73. https://doi.org/10.1038/271
  70. Lyle, R., Bena, F., Gagos, S., Gehrig, C., Lopez, G., Schinzel, A., Lespinasse, J., Bottani, A., Dahoun, S., Taine, L., et al. (2009). Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. Eur. J. Hum. Genet. 17, 454-466. https://doi.org/10.1038/ejhg.2008.214
  71. Macarthur, D.G., Seto, J.T., Chan, S., Quinlan, K.G.R., Raftery, J.M., Turner, N., Nicholson, M.D., Kee, A.J., Hardeman, E.C., Gunning, P.W., et al. (2008). An Actn3 knockout mouse provides mechanistic insights into the association between ${\alpha}$-actinin-3 deficiency and human athletic performance. Hum. Mol. Genet. 17, 1076-1086. https://doi.org/10.1093/hmg/ddm380
  72. MacArthur, D.G., Seto, J.T., Raftery, J.M., Quinlan, K.G., Huttley, G.A., Hook, J.W., Lemckert, F.A., Kee, A.J., Edwards, M.R., Berman, Y., et al. (2007). Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat. Genet. 39, 1261-1265. https://doi.org/10.1038/ng2122
  73. Mair, W., Morantte, I., Rodrigues, A.P.C., Manning, G., Montminy, M., Shaw, R.J., and Dillin, A. (2011). Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470, 404-408. https://doi.org/10.1038/nature09706
  74. Manfredini, R., Fabbian, F., Manfredini, F., Salmi, R., Gallerani, M., and Bossone, E. (2013). Chronobiology in aortic diseases - "is this really a random phenomenon?" Prog. Cardiovasc. Dis. 56, 116-124. https://doi.org/10.1016/j.pcad.2013.04.001
  75. Martin, K.R., Corlett, A., Dubach, D., Mustafa, T., Coleman, H.A., Parkington, H.C., Merson, T.D., Bourne, J.A., Porta, S., Arbones, M.L., et al. (2012). Overexpression of RCAN1 causes Down syndrome-like hippocampal deficits that alter learning and memory. Hum. Mol. Genet. 21, 3025-3041. https://doi.org/10.1093/hmg/dds134
  76. Martinez-Hoyer, S., Aranguren-Ibanez, A., Garcia-Garcia, J., Serrano-Candelas, E., Vilardell, J., Nunes, V., Aguado, F., Oliva, B., Itarte, E., and Perez-Riba, M. (2013). Protein kinase CK2-dependent phosphorylation of the human Regulators of Calcineurin reveals a novel mechanism regulating the calcineurin-NFATc signaling pathway. Biochim. Biophys. Acta 1833, 2311-2321. https://doi.org/10.1016/j.bbamcr.2013.05.021
  77. Martinez-Hoyer, S., Sole-Sanchez, S., Aguado, F., Martinez-Martinez, S., Serrano-Candelas, E., Hernandez, J.L., Iglesias, M., Redondo, J.M., Casanovas, O., Messeguer, R., et al. (2015). A novel role for an RCAN3-derived peptide as a tumor suppressor in breast cancer. Carcinogenesis 36, 792-799. https://doi.org/10.1093/carcin/bgv056
  78. Martino, T.A. and Sole, M.J. (2009). Molecular time: an often overlooked dimension to cardiovascular disease. Circ. Res. 105, 1047-1061. https://doi.org/10.1161/CIRCRESAHA.109.206201
  79. McCormick, M.K., Schinzel, A., Petersen, M.B., Stetten, G., Driscoll, D.J., Cantu, E.S., Tranebjaerg, L., Mikkelsen, M., Watkins, P.C., and Antonarakis, S.E. (1989). Molecular genetic approach to the characterization of the “Down syndrome region” of chromosome 21. Genomics 5, 325-331. https://doi.org/10.1016/0888-7543(89)90065-7
  80. Megarbane, A., Ravel, A., Mircher, C., Sturtz, F., Grattau, Y., Rethore, M.O., Delabar, J.M., and Mobley, W.C. (2009). The 50th anniversary of the discovery of trisomy 21: the past, present, and future of research and treatment of Down syndrome. Genet. Med. 11, 611-616. https://doi.org/10.1097/GIM.0b013e3181b2e34c
  81. Mehta, S., Li, H., Hogan, P.G., and Cunningham, K.W. (2009). Domain architecture of the regulators of calcineurin (RCANs) and identification of a divergent RCAN in yeast. Mol. Cell. Biol. 29, 2777-2793. https://doi.org/10.1128/MCB.01197-08
  82. Meijsen, J.J., Rammos, A., Campbell, A., Hayward, C., Porteous, D.J., Deary, I.J., Marioni, R.E., and Nicodemus, K.K. (2019). Using tree-based methods for detection of gene-gene interactions in the presence of a polygenic signal: simulation study with application to educational attainment in the Generation Scotland Cohort Study. Bioinformatics 35, 181-188. https://doi.org/10.1093/bioinformatics/bty462
  83. Min, C.K., Yeom, D.R., Lee, K.E., Kwon, H.K., Kang, M., Kim, Y.S., Park, Z.Y., Jeon, H., and Kim, D.H. (2012). Coupling of ryanodine receptor 2 and voltage-dependent anion channel 2 is essential for Ca2+ transfer from the sarcoplasmic reticulum to the mitochondria in the heart. Biochem. J. 447, 371-379. https://doi.org/10.1042/BJ20120705
  84. Miyazaki, T., Kanou, Y., Murata, Y., Ohmori, S., Niwa, T., Maeda, K., Yamamura, H., and Seo, H. (1996). Molecular cloning of a novel thyroid hormone-responsive gene, ZAKI-4, in human skin fibroblasts. J. Biol. Chem. 271, 14567-14571. https://doi.org/10.1074/jbc.271.24.14567
  85. Moley, K.H. and Colditz, G.A. (2016). Effects of obesity on hormonally driven cancer in women. Sci. Transl. Med. 8, 323ps3. https://doi.org/10.1126/scitranslmed.aad8842
  86. Mulero, M.C., Aubareda, A., Schluter, A., and Perez-Riba, M. (2007). RCAN3, a novel calcineurin inhibitor that down-regulates NFAT-dependent cytokine gene expression. Biochim. Biophys. Acta 1773, 330-341. https://doi.org/10.1016/j.bbamcr.2006.12.007
  87. Niitsu, H., Hinoi, T., Kawaguchi, Y., Sentani, K., Yuge, R., Kitadai, Y., Sotomaru, Y., Adachi, T., Saito, Y., Miguchi, M., et al. (2016). KRAS mutation leads to decreased expression of regulator of calcineurin 2, resulting in tumor proliferation in colorectal cancer. Oncogenesis 5, e253. https://doi.org/10.1038/oncsis.2016.47
  88. North, K.N., Yang, N., Wattanasirichaigoon, D., Mills, M., Easteal, S., and Beggs, A.H. (1999). A common nonsense mutation results in ${\alpha}$-actinin-3 deficiency in the general population. Nat. Genet. 21, 353-354. https://doi.org/10.1038/7675
  89. Oh, M., Dey, A., Gerard, R.D., Hill, J.A., and Rothermel, B.A. (2010). The CCAAT/enhancer binding protein ${\beta}$ ($C/EBP{\beta}$ cooperates with NFAT to control expression of the calcineurin regulatory protein RCAN1-4. J. Biol. Chem. 285, 16623-16631. https://doi.org/10.1074/jbc.M109.098236
  90. Ohno, S. (1970). Evolution by Gene Duplication (Berlin, Germany: Springer-Verlag).
  91. Papadimitriou, I.D., Eynon, N., Yan, X., Munson, F., Jacques, M., Kuang, J., Voisin, S., North, K.N., and Bishop, D.J. (2019). A "human knockout" model to investigate the influence of the ${\alpha}$-actinin-3 protein on exercise-induced mitochondrial adaptations. Sci. Rep. 9, 12688. https://doi.org/10.1038/s41598-019-49042-y
  92. Park, J.S., Jeong, J.H., Byun, J.K., Lim, M.A., Kim, E.K., Kim, S.M., Choi, S.Y., Park, S.H., Min, J.K., and Cho, M.L. (2017). Regulator of calcineurin 3 ameliorates autoimmune arthritis by suppressing Th17 cell differentiation. Am. J. Pathol. 187, 2034-2045. https://doi.org/10.1016/j.ajpath.2017.05.008
  93. Parra, V., Altamirano, F., Hernandez-Fuentes, C.P., Tong, D., Kyrychenko, V., Rotter, D., Pedrozo, Z., Hill, J.A., Eisner, V., Lavandero, S., et al. (2018). Down syndrome critical region 1 gene, Rcan1, helps maintain a more fused mitochondrial network. Circ. Res. 122, e20-e33. https://doi.org/10.1161/CIRCRESAHA.117.312466
  94. Patel, A., Yamashita, N., Ascano, M., Bodmer, D., Boehm, E., Bodkin-Clarke, C., Ryu, Y.K., and Kuruvilla, R. (2015). RCAN1 links impaired neurotrophin trafficking to aberrant development of the sympathetic nervous system in Down syndrome. Nat. Commun. 6, 10119. https://doi.org/10.1038/ncomms10119
  95. Peiris, H., Duffield, M.D., Fadista, J., Jessup, C.F., Kashmir, V., Genders, A.J., McGee, S.L., Martin, A.M., Saiedi, M., Morton, N., et al. (2016). A syntenic cross species aneuploidy genetic screen links RCAN1 expression to ${\beta}$-cell mitochondrial dysfunction in type 2 diabetes. PLoS Genet. 12, e1006033. https://doi.org/10.1371/journal.pgen.1006033
  96. Peiris, H. and Keating, D.J. (2018). The neuronal and endocrine roles of RCAN1 in health and disease. Clin. Exp. Pharmacol. Physiol. 45, 377-383. https://doi.org/10.1111/1440-1681.12884
  97. Peiris, H., Raghupathi, R., Jessup, C.F., Zanin, M.P., Mohanasundaram, D., Mackenzie, K.D., Chataway, T., Clarke, J.N., Brealey, J., Coates, P.T., et al. (2012). Increased expression of the glucose-responsive gene, RCAN1, causes hypoinsulinemia, ${\beta}$-cell dysfunction, and diabetes. Endocrinology 153, 5212-5221. https://doi.org/10.1210/en.2011-2149
  98. Pfister, S.C., Machado-Santelli, G.M., Han, S.W., and Henrique-Silva, F. (2002). Mutational analyses of the signals involved in the subcellular location of DSCR1. BMC Cell Biol. 3, 24. https://doi.org/10.1186/1471-2121-3-24
  99. Pisani, D.F., Barquissau, V., Chambard, J.C., Beuzelin, D., Ghandour, R.A., Giroud, M., Mairal, A., Pagnotta, S., Cinti, S., Langin, D., et al. (2018). Mitochondrial fission is associated with UCP1 activity in human brite/ beige adipocytes. Mol. Metab. 7, 35-44. https://doi.org/10.1016/j.molmet.2017.11.007
  100. Rahmani, Z., Blouin, J.L., Creau-Goldberg, N., Watkins, P.C., Mattei, J.F., Poissonnier, M., Prieur, M., Chettouh, Z., Nicole, A., and Aurias, A. (1990). Down syndrome critical region around D21S55 on proximal 21q22.3. Am. J. Med. Genet. Suppl. 7, 98-103.
  101. Rakowski-Anderson, T., Wong, H., Rothermel, B., Cain, P., Lavilla, C., Pullium, J.K., and Hoeffer, C. (2012). Fecal corticosterone levels in RCAN1 mutant mice. Comp. Med. 62, 87-94.
  102. Ramos, E.M., Hoffman, D., Junkins, H.A., Maglott, D., Phan, L., Sherry, S.T., Feolo, M., and Hindorff, L.A. (2014). Phenotype-genotype integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with existing genomic resources. Eur. J. Hum. Genet. 22, 144-147. https://doi.org/10.1038/ejhg.2013.96
  103. Ribas, V., Drew, B.G., Zhou, Z., Phun, J., Kalajian, N.Y., Soleymani, T., Daraei, P., Widjaja, K., Wanagat, J., Vallim, T.Q.D.A., et al. (2016). Skeletal muscle action of estrogen receptor ${\alpha}$ is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci. Transl. Med. 8, 334ra54. https://doi.org/10.1126/scitranslmed.aad3815
  104. Rothermel, B., Vega, R.B., Yang, J., Wu, H., Bassel-Duby, R., and Williams, R.S. (2000). A protein encoded within the Down syndrome critical region is enriched in striated muscles and inhibits calcineurin signaling. J. Biol. Chem. 275, 8719-8725. https://doi.org/10.1074/jbc.275.12.8719
  105. Rothermel, B.A., McKinsey, T.A., Vega, R.B., Nicol, R.L., Mammen, P., Yang, J., Antos, C.L., Shelton, J.M., Bassel-Duby, R., Olson, E.N., et al. (2001). Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc. Natl. Acad. Sci. U. S. A. 98, 3328-3333. https://doi.org/10.1073/pnas.041614798
  106. Rothermel, B.A., Vega, R.B., and Williams, R.S. (2003). The role of modulatory calcineurin-interacting proteins in calcineurin signaling. Trends Cardiovasc. Med. 13, 15-21. https://doi.org/10.1016/S1050-1738(02)00188-3
  107. Rotter, D., Grinsfelder, D.B., Parra, V., Pedrozo, Z., Singh, S., Sachan, N., and Rothermel, B.A. (2014). Calcineurin and its regulator, RCAN1, confer timeof-day changes in susceptibility of the heart to ischemia/reperfusion. J. Mol. Cell. Cardiol. 74, 103-111. https://doi.org/10.1016/j.yjmcc.2014.05.004
  108. Rotter, D., Peiris, H., Grinsfelder, D.B., Martin, A.M., Burchfield, J., Parra, V., Hull, C., Morales, C.R., Jessup, C.F., Matusica, D., et al. (2018). Regulator of Calcineurin 1 helps coordinate whole-body metabolism and thermogenesis. EMBO Rep. 19, e44706.
  109. Roy, J. and Cyert, M.S. (2019). Identifying new substrates and functions for an old enzyme: calcineurin. Cold Spring Harb. Perspect. Biol. 12, a035436. https://doi.org/10.1101/cshperspect.a035436
  110. Sachan, N., Dey, A., Rotter, D., Grinsfelder, D.B., Battiprolu, P.K., Sikder, D., Copeland, V., Oh, M., Bush, E., Shelton, J.M., et al. (2011). Sustained hemodynamic stress disrupts normal circadian rhythms in calcineurindependent signaling and protein phosphorylation in the heart. Circ. Res. 108, 437-445. https://doi.org/10.1161/CIRCRESAHA.110.235309
  111. Sebio, A., Gerger, A., Matsusaka, S., Yang, D., Zhang, W., Stremitzer, S., Stintzing, S., Sunakawa, Y., Yamauchi, S., Ning, Y., et al. (2015). Genetic variants within obesity-related genes are associated with tumor recurrence in patients with stages II/III colon cancer. Pharmacogenet. Genomics 25, 30-37. https://doi.org/10.1097/FPC.0000000000000101
  112. Seo, J.Y., Jung, Y., Kim, D.Y., Ryu, H.G., Lee, J., Kim, S.W., and Kim, K.T. (2019). DAP5 increases axonal outgrowth of hippocampal neurons by enhancing the cap-independent translation of DSCR1.4 mRNA. Cell Death Dis. 10, 49. https://doi.org/10.1038/s41419-018-1299-x
  113. Serrano-Candelas, E., Aleman-Muench, G., Sole-Sanchez, S., Aubareda, A., Martinez-Hoyer, S., Adan, J., Aranguren-Ibanez, A., Pritchard, M.A., Soldevila, G., and Perez-Riba, M. (2015). RCAN 1 and 3 proteins regulate thymic positive selection. Biochem. Biophys. Res. Commun. 460, 295-301. https://doi.org/10.1016/j.bbrc.2015.03.029
  114. Serrano-Candelas, E., Farre, D., Aranguren-Ibanez, A., Martinez-Hoyer, S., and Perez-Riba, M. (2014). The vertebrate RCAN gene family: novel insights into evolution, structure and regulation. PLoS One 9, e85539. https://doi.org/10.1371/journal.pone.0085539
  115. Seto, J.T., Quinlan, K.G.R., Lek, M., Zheng, X.F., Garton, F., Macarthur, D.G., Hogarth, M.W., Houweling, P.J., Gregorevic, P., Turner, N., et al. (2013). ACTN3 genotype infuences muscle performance through the regulation of calcineurin signaling. J. Clin. Invest. 123, 4255-4263. https://doi.org/10.1172/JCI67691
  116. Shaw, J.L. and Chang, K.T. (2013). Nebula/DSCR1 upregulation delays neurodegeneration and protects against APP-induced axonal transport defects by restoring calcineurin and GSK-3${\beta}$ signaling. PLoS Genet. 9, e1003792. https://doi.org/10.1371/journal.pgen.1003792
  117. Shaw, J.L., Zhang, S., and Chang, K.T. (2015). Bidirectional regulation of amyloid precursor protein-induced memory defects by Nebula/DSCR1:a protein upregulated in Alzheimer's disease and Down syndrome. J. Neurosci. 35, 11374-11383. https://doi.org/10.1523/JNEUROSCI.1163-15.2015
  118. Shin, S.Y., Choo, S.M., Kim, D., Baek, S.J., Wolkenhauer, O., and Cho, K.H. (2006). Switching feedback mechanisms realize the dual role of MCIP in the regulation of calcineurin activity. FEBS Lett. 580, 5965-5973. https://doi.org/10.1016/j.febslet.2006.09.064
  119. Siddiq, A., Miyazaki, T., Takagishi, Y., Kanou, Y., Hayasaka, S., Inouye, M., Seo, H., and Murata, Y. (2001). Expression of ZAKI-4 messenger ribonucleic acid in the brain during rat development and the effect of hypothyroidism. Endocrinology 142, 1752-1759. https://doi.org/10.1210/endo.142.5.8156
  120. Sobrado, M., Ramirez, B.G., Neria, F., Lizasoain, I., Arbones, M.L., Minami, T., Redondo, J.M., Moro, M.A., and Cano, E. (2012). Regulator of calcineurin 1 (Rcan1) has a protective role in brain ischemia/reperfusion injury. J. Neuroinflammation 9, 48.
  121. Stevenson, N.L., Bergen, D.J.M., Xu, A., Wyatt, E., Henry, F., McCaughey, J., Vuolo, L., Hammond, C.L., and Stephens, D.J. (2018). Regulator of calcineurin-2 is a centriolar protein with a role in cilia length control. J. Cell Sci. 131, jcs212258. https://doi.org/10.1242/jcs.212258
  122. Strippoli, P., D'Addabbo, P., Lenzi, L., Giannone, S., Canaider, S., Casadei, R., Vitale, L., Carinci, P., and Zannotti, M. (2002). Segmental paralogy in the human genome: a large-scale triplication on 1p, 6p, and 21q. Mamm. Genome 13, 456-462. https://doi.org/10.1007/s00335-001-2157-0
  123. Strippoli, P., Lenzi, L., Petrini, M., Carinci, P., and Zannotti, M. (2000). A new gene family including DSCR1 (Down Syndrome Candidate Region 1) and ZAKI-4: characterization from yeast to human and identification of DSCR1-like 2, a novel human member (DSCR1L2). Genomics 64, 252-263. https://doi.org/10.1006/geno.2000.6127
  124. Sun, L., Hao, Y., An, R., Li, H., Xi, C., and Shen, G. (2014). Overexpression of Rcan1-1L inhibits hypoxia-induced cell apoptosis through induction of mitophagy. Mol. Cells 37, 785-794. https://doi.org/10.14348/molcells.2014.0103
  125. Sun, X., Hayashi, Y., Xu, S., Kanou, Y., Takagishi, Y., Tang, Y., and Murata, Y. (2011b). Inactivation of the Rcan2 gene in mice ameliorates the age- and diet-induced obesity by causing a reduction in food intake. PLoS One 6, e14605. https://doi.org/10.1371/journal.pone.0014605
  126. Sun, X., Wu, Y., Chen, B., Zhang, Z., Zhou, W., Tong, Y., Yuan, J., Xia, K., Gronemeyer, H., Flavell, R.A., et al. (2011a). Regulator of calcineurin 1 (RCAN1) facilitates neuronal apoptosis through caspase-3 activation. J. Biol. Chem. 286, 9049-9062. https://doi.org/10.1074/jbc.M110.177519
  127. Takeo, S., Tsuda, M., Akahori, S., Matsuo, T., and Aigaki, T. (2006). The calcineurin regulator sra plays an essential role in female meiosis in Drosophila. Curr. Biol. 16, 1435-1440. https://doi.org/10.1016/j.cub.2006.05.058
  128. Tsai, J.Y. and Young, M.E. (2009). Diurnal variations in myocardial metabolism. Heart Metab. 44, 5-9.
  129. U, M., Shen, L., Oshida, T., Miyauchi, J., Yamada, M., and Miyashita, T. (2004). Identification of novel direct transcriptional targets of glucocorticoid receptor. Leukemia 18, 1850-1856. https://doi.org/10.1038/sj.leu.2403516
  130. Valenti, D., Manente, G.A., Moro, L., Marra, E., Vacca, R.A., and Anna, R. (2011). Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of cAMP/PKA signaling pathway. Biochem. J. 435, 679-688. https://doi.org/10.1042/BJ20101908
  131. Vega, R.B., Rothermel, B.A., Weinheimer, C.J., Kovacs, A., Naseem, R.H., Bassel-Duby, R., Williams, R.S., and Olson, E.N. (2003). Dual roles of modulatory calcineurin-interacting protein 1 in cardiac hypertrophy. Proc. Natl. Acad. Sci. U. S. A. 100, 669-674. https://doi.org/10.1073/pnas.0237225100
  132. Wang, W., Zhu, J.Z., Chang, K.T., and Min, K.T. (2012). DSCR1 interacts with FMRP and is required for spine morphogenesis and local protein synthesis. EMBO J. 31, 3655-3666. https://doi.org/10.1038/emboj.2012.190
  133. Wu, H., Kao, S., Barrientos, T., Baldwin, S.H., Olson, E.N., Crabtree, G.R., Zhou, B., and Chang, C.P. (2007). Down syndrome critical region-1 is a transcriptional target of nuclear factor of activated T cells-c1 within the endocardium during heart development. J. Biol. Chem. 282, 30673-30679. https://doi.org/10.1074/jbc.M703622200
  134. Wu, Y. and Song, W. (2013). Regulation of RCAN1 translation and its role in oxidative stress-induced apoptosis. FASEB J. 27, 208-221. https://doi.org/10.1096/fj.12-213124
  135. Yang, J., Rothermel, B., Vega, R.B., Frey, N., McKinsey, T.A., Olson, E.N., Bassel-Duby, R., and Williams, R.S. (2000). Independent signals control expression of the calcineurin inhibitory proteins MCIP1 and MCIP2 in striated muscles. Circ. Res. 87, E61-E68.
  136. Yun, Y., Zhang, Y., Zhang, C., Huang, L., Tan, S., Wang, P., Vilarino-Guell, C., Song, W., and Sun, X. (2019). Regulator of calcineurin 1 is a novel RNAbinding protein to regulate neuronal apoptosis. Mol. Psychiatry 2019 Aug 27 [Epub]. https://doi.org/10.1038/s41380-019-0487-0
  137. Zhang, Y., Kang, H.R., and Han, K. (2019). Differential cell-type-expression of CYFIP1 and CYFIP2 in the adult mouse hippocampus. Anim. Cells Syst. (Seoul) 23, 380-383. https://doi.org/10.1080/19768354.2019.1696406
  138. Zhao, Y., Long, L., Wan, J., Biliya, S., Brady, S.C., Lee, D., Ojemakinde, A., Andersen, E.C., Vannberg, F.O., Lu, H., et al. (2020). A spontaneous complex structural variant in rcan-1 increases exploratory behavior and laboratory fitness of Caenorhabditis elegans. PLoS Genet. 16, e1008606. https://doi.org/10.1371/journal.pgen.1008606
  139. Zheng, L., Liu, H., Wang, P., Song, W., and Sun, X. (2014). Regulator of calcineurin 1 gene transcription is regulated by nuclear factor-kappaB. Curr. Alzheimer Res. 11, 156-164. https://doi.org/10.2174/1567205010666131212114907

피인용 문헌

  1. Ca2+ Sensitivity of Anoctamin 6/TMEM16F Is Regulated by the Putative Ca2+-Binding Reservoir at the N-Terminal Domain vol.44, pp.2, 2020, https://doi.org/10.14348/molcells.2021.2203
  2. Interplay of RNA-Binding Proteins and microRNAs in Neurodegenerative Diseases vol.22, pp.10, 2020, https://doi.org/10.3390/ijms22105292