DOI QR코드

DOI QR Code

Lipophagy: Molecular Mechanisms and Implications in Metabolic Disorders

  • 투고 : 2020.02.16
  • 심사 : 2020.06.03
  • 발행 : 2020.08.31

초록

Autophagy is an intracellular degradation system that breaks down damaged organelles or damaged proteins using intracellular lysosomes. Recent studies have also revealed that various forms of selective autophagy play specific physiological roles under different cellular conditions. Lipid droplets, which are mainly found in adipocytes and hepatocytes, are dynamic organelles that store triglycerides and are critical to health. Lipophagy is a type of selective autophagy that targets lipid droplets and is an essential mechanism for maintaining homeostasis of lipid droplets. However, while processes that regulate lipid droplets such as lipolysis and lipogenesis are relatively well known, the major factors that control lipophagy remain largely unknown. This review introduces the underlying mechanism by which lipophagy is induced and regulated, and the current findings on the major roles of lipophagy in physiological and pathological status. These studies will provide basic insights into the function of lipophagy and may be useful for the development of new therapies for lipophagy dysfunction-related diseases.

키워드

참고문헌

  1. Baerga, R., Zhang, Y., Chen, P.H., Goldman, S., and Jin, S.V. (2009). Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy 5, 1118-1130. https://doi.org/10.4161/auto.5.8.9991
  2. Barbato, D.L., Tatulli, G., Aquilano, K., and Ciriolo, M. (2013). FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment. Cell Death Dis. 4, e861. https://doi.org/10.1038/cddis.2013.404
  3. Bruschi, F.V., Claudel, T., Tardelli, M., Caligiuri, A., Stulnig, T.M., Marra, F., and Trauner, M. (2017). The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology 65, 1875-1890. https://doi.org/10.1002/hep.29041
  4. Byun, S., Seok, S., Kim, Y.C., Zhang, Y., Yau, P., Iwamori, N., Xu, H.E., Ma, J., Kemper, B., and Kemper, J.K. (2020). Fasting-induced FGF21 signaling activates hepatic autophagy and lipid degradation via JMJD3 histone demethylase. Nat. Commun. 11, 807. https://doi.org/10.1038/s41467-020-14384-z
  5. Cai, J., Pires, K.M., Ferhat, M., Chaurasia, B., Buffolo, M.A., Smalling, R., Sargsyan, A., Atkinson, D.L., Summers, S.A., Graham, T.E., et al. (2018). Autophagy ablation in adipocytes induces insulin resistance and reveals roles for lipid peroxide and Nrf2 signaling in adipose-liver crosstalk. Cell Rep. 25, 1708-1717.e5. https://doi.org/10.1016/j.celrep.2018.10.040
  6. Chao, X., Wang, S., Zhao, K., Li, Y., Williams, J.A., Li, T., Chavan, H., Krishnamurthy, P., He, X.C., and Li, L. (2018). Impaired TFEB-mediated lysosome biogenesis and autophagy promote chronic ethanol-induced liver injury and steatosis in mice. Gastroenterology 155, 865-879.e12. https://doi.org/10.1053/j.gastro.2018.05.027
  7. Deng, X., Pan, X., Cheng, C., Liu, B., Zhang, H., Zhang, Y., and Xu, K. (2017). Regulation of SREBP-2 intracellular trafficking improves impaired autophagic flux and alleviates endoplasmic reticulum stress in NAFLD. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 337-350. https://doi.org/10.1016/j.bbalip.2016.12.007
  8. Ding, W.X., Li, M., Chen, X., Ni, H.M., Lin, C.W., Gao, W., Lu, B., Stolz, D.B., Clemens, D.L., and Yin, X.M. (2010). Autophagy reduces acute ethanolinduced hepatotoxicity and steatosis in mice. Gastroenterology 139, 1740-1752. https://doi.org/10.1053/j.gastro.2010.07.041
  9. Ding, W.X., Manley, S., and Ni, H.M. (2011). The emerging role of autophagy in alcoholic liver disease. Exp. Biol. Med. (Maywood) 236, 546-556. https://doi.org/10.1258/ebm.2011.010360
  10. Ducharme, N.A. and Bickel, P.E. (2008). Lipid droplets in lipogenesis and lipolysis. Endocrinology 149, 942-949. https://doi.org/10.1210/en.2007-1713
  11. Dupont, N., Chauhan, S., Arko-Mensah, J., Castillo, E.F., Masedunskas, A., Weigert, R., Robenek, H., Proikas-Cezanne, T., and Deretic, V. (2014). Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr. Biol. 24, 609-620. https://doi.org/10.1016/j.cub.2014.02.008
  12. Fredrikson, G., Tornqvist, H., and Belfrage, P. (1986). Hormone-sensitive lipase and monoacylglycerol lipase are both required for complete degradation of adipocyte triacylglycerol. Biochim. Biophys. Acta 876, 288-293. https://doi.org/10.1016/0005-2760(86)90286-9
  13. Fu, X., Jin, L., Han, L., Yuan, Y., Mu, Q., Wang, H., Yang, J., Ning, G., Zhou, D., and Zhang, Z. (2019). miR-129-5p inhibits adipogenesis through autophagy and may be a potential biomarker for obesity. Int. J. Endocrinol. 2019, 5069578.
  14. Goldman, S., Zhang, Y., and Jin, S. (2010). Autophagy and adipogenesis:implications in obesity and type II diabetes. Autophagy 6, 179-181. https://doi.org/10.4161/auto.6.1.10814
  15. Grumet, L., Eichmann, T.O., Taschler, U., Zierler, K.A., Leopold, C., Moustafa, T., Radovic, B., Romauch, M., Yan, C., and Du, H. (2016). Lysosomal acid lipase hydrolyzes retinyl ester and affects retinoid turnover. J. Biol. Chem. 291, 17977-17987. https://doi.org/10.1074/jbc.M116.724054
  16. Hansen, J.S., de Mare, S., Jones, H.A., Goransson, O., and Lindkvist-Petersson, K. (2017). Visualization of lipid directed dynamics of perilipin 1 in human primary adipocytes. Sci. Rep. 7, 15011. https://doi.org/10.1038/s41598-017-15059-4
  17. Hernandez-Gea, V., Ghiassi-Nejad, Z., Rozenfeld, R., Gordon, R., Fiel, M.I., Yue, Z., Czaja, M.J., and Friedman, S.L. (2012). Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142, 938-946. https://doi.org/10.1053/j.gastro.2011.12.044
  18. Iredale, J.P., Thompson, A., and Henderson, N.C. (2013). Extracellular matrix degradation in liver fibrosis: biochemistry and regulation. Biochim. Biophys. Acta 1832, 876-883. https://doi.org/10.1016/j.bbadis.2012.11.002
  19. Jung, H.S., Chung, K.W., Kim, J.W., Kim, J., Komatsu, M., Tanaka, K., Nguyen, Y.H., Kang, T.M., Yoon, K.H., and Kim, J.W. (2008). Loss of autophagy diminishes pancreatic ${\beta}$ cell mass and function with resultant hyperglycemia. Cell Metab. 8, 318-324. https://doi.org/10.1016/j.cmet.2008.08.013
  20. Kaushik, S. and Cuervo, A.M. (2015). Degradation of lipid dropletassociated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 17, 759-770. https://doi.org/10.1038/ncb3166
  21. Kim, J., Lim, Y.M., and Lee, M.S. (2018). The role of autophagy in systemic metabolism and human-type diabetes. Mol. Cells 41, 11-17. https://doi.org/10.14348/MOLCELLS.2018.2228
  22. Kim, K.H., Jeong, Y.T., Oh, H., Kim, S.H., Cho, J.M., Kim, Y.N., Kim, S.S., Kim, D.H., Hur, K.Y., and Kim, H.K. (2013). Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19, 83. https://doi.org/10.1038/nm.3014
  23. Kim, K.Y., Jang, H.J., Yang, Y.R., Park, K.I., Seo, J., Shin, I.W., Jeon, T.I., Ahn, S.C., Suh, P.G., and Osborne, T.F. (2016). SREBP-2/PNPLA8 axis improves non-alcoholic fatty liver disease through activation of autophagy. Sci. Rep. 6, 1-14. https://doi.org/10.1038/s41598-016-0001-8
  24. Kimmel, A.R. and Sztalryd, C. (2016). The perilipins: major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Ann. Rev. Nutr. 36, 471-509. https://doi.org/10.1146/annurev-nutr-071813-105410
  25. Kiss, R.S. and Nilsson, T. (2014). Rab proteins implicated in lipid storage and mobilization. J. Biomed. Res. 28, 169.
  26. Kleinert, M., Clemmensen, C., Hofmann, S.M., Moore, M.C., Renner, S., Woods, S.C., Huypens, P., Beckers, J., de Angelis, M.H., Schurmann, A., et al. (2018). Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 14, 140-162. https://doi.org/10.1038/nrendo.2017.161
  27. Koga, H., Kaushik, S., and Cuervo, A.M. (2010). Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 24, 3052-3065. https://doi.org/10.1096/fj.09-144519
  28. Kosacka, J., Kern, M., Kloting, N., Paeschke, S., Rudich, A., Haim, Y., Gericke, M., Serke, H., Stumvoll, M., Bechmann, I., et al. (2015). Autophagy in adipose tissue of patients with obesity and type 2 diabetes. Mol. Cell. Endocrinol. 409, 21-32. https://doi.org/10.1016/j.mce.2015.03.015
  29. Kurahashi, T., Hamashima, S., Shirato, T., Lee, J., Homma, T., Kang, E.S., and Fujii, J. (2015). An SOD1 deficiency enhances lipid droplet accumulation in the fasted mouse liver by aborting lipophagy. Biochem. Biophys. Res. Commun. 467, 866-871. https://doi.org/10.1016/j.bbrc.2015.10.052
  30. Levine, B. and Kroemer, G. (2019). Biological functions of autophagy genes: a disease perspective. Cell 176, 11-42. https://doi.org/10.1016/j.cell.2018.09.048
  31. Li, Y., Yang, P., Zhao, L., Chen, Y., Zhang, X., Zeng, S., Wei, L., Varghese, Z., Moorhead, J.F., and Chen, Y. (2019). CD36 plays a negative role in the regulation of lipophagy in hepatocytes through an AMPK-dependent pathway. J. Lipid Res. 60, 844-855. https://doi.org/10.1194/jlr.M090969
  32. Li, Z., Schulze, R.J., Weller, S.G., Krueger, E.W., Schott, M.B., Zhang, X., Casey, C.A., Liu, J., Stockli, J., and James, D.E. (2016). A novel Rab10-EHBP1-EHD2 complex essential for the autophagic engulfment of lipid droplets. Sci. Adv. 2, e1601470. https://doi.org/10.1126/sciadv.1601470
  33. Lim, H., Lim, Y.M., Kim, K.H., Jeon, Y.E., Park, K., Kim, J., Hwang, H.Y., Lee, D.J., Pagire, H., and Kwon, H.J. (2018). A novel autophagy enhancer as a therapeutic agent against metabolic syndrome and diabetes. Nat. Commun. 9, 1-14. https://doi.org/10.1038/s41467-017-02088-w
  34. Lin, Y.C., Chang, P.F., Lin, H.F., Liu, K., Chang, M.H., and Ni, Y.H. (2016). Variants in the autophagy-related gene IRGM confer susceptibility to nonalcoholic fatty liver disease by modulating lipophagy. J. Hepatol. 65, 1209-1216. https://doi.org/10.1016/j.jhep.2016.06.029
  35. Liu, J., Li, Y., Zhou, X., Zhang, X., Meng, H., Liu, S., Zhang, L., He, J., He, Q., and Geng, Y. (2020). CaMKIV limits metabolic damage through induction of hepatic autophagy by CREB in obese mice. J. Endocrinol. 244, 353-367. https://doi.org/10.1530/JOE-19-0251
  36. Liu, K. and Czaja, M.J. (2013). Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 20, 3-11. https://doi.org/10.1038/cdd.2012.63
  37. Liu, Y., Takahashi, Y., Desai, N., Zhang, J., Serfass, J.M., Shi, Y.G., Lynch, C.J., and Wang, H.G. (2016). Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci. Rep. 6, 20453. https://doi.org/10.1038/srep20453
  38. Livero, F.A. and Acco, A. (2016). Molecular basis of alcoholic fatty liver disease: from incidence to treatment. Hepatol. Res. 46, 111-123. https://doi.org/10.1111/hepr.12594
  39. Lizaso, A., Tan, K.T., and Lee, Y.H. (2013). ${\beta}$-adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation. Autophagy 9, 1228-1243. https://doi.org/10.4161/auto.24893
  40. Lu, N.S., Chiu, W.C., Chen, Y.L., Peng, H.C., Shirakawa, H., and Yang, S.C. (2020). Fish oil up-regulates hepatic autophagy in rats with chronic ethanol consumption. J. Nutr. Biochem. 77, 108314. https://doi.org/10.1016/j.jnutbio.2019.108314
  41. Lu, W., Mei, J., Yang, J., Wu, Z., Liu, J., Miao, P., Chen, Y., Wen, Z., Zhao, Z., Kong, H., et al. (2020). ApoE deficiency promotes non-alcoholic fatty liver disease in mice via impeding AMPK/mTOR mediated autophagy. Life Sci. 252, 117601. https://doi.org/10.1016/j.lfs.2020.117601
  42. Lu, Y. and Cederbaum, A.I. (2018). Cytochrome P450s and alcoholic liver disease. Curr. Pharm. Des. 24, 1502-1517. https://doi.org/10.2174/1381612824666180410091511
  43. Martinez-Lopez, N., Garcia-Macia, M., Sahu, S., Athonvarangkul, D., Liebling, E., Merlo, P., Cecconi, F., Schwartz, G.J., and Singh, R. (2016). Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver. Cell Metab. 23, 113-127. https://doi.org/10.1016/j.cmet.2015.10.008
  44. Miyamae, Y., Nishito, Y., Nakai, N., Nagumo, Y., Usui, T., Masuda, S., Kambe, T., and Nagao, M. (2016). Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line. Biochem. Biophys. Res. Commun. 477, 40-46. https://doi.org/10.1016/j.bbrc.2016.06.018
  45. Negoita, F., Blomdahl, J., Wasserstrom, S., Winberg, M.E., Osmark, P., Larsson, S., Stenkula, K.G., Ekstedt, M., Kechagias, S., and Holm, C. (2019). PNPLA3 variant M148 causes resistance to starvation-mediated lipid droplet autophagy in human hepatocytes. J. Cell. Biochem. 120, 343-356. https://doi.org/10.1002/jcb.27378
  46. Ni, H.M., Williams, J.A., Yang, H., Shi, Y.H., Fan, J., and Ding, W.X. (2012). Targeting autophagy for the treatment of liver diseases. Pharmacol. Res. 66, 463-474. https://doi.org/10.1016/j.phrs.2012.07.003
  47. O’Mahony, F., Wroblewski, K., O’Byrne, S.M., Jiang, H., Clerkin, K., Benhammou, J., Blaner, W.S., and Beaven, S.W. (2015). Liver X receptors balance lipid stores in hepatic stellate cells through Rab18, a retinoid responsive lipid droplet protein. Hepatology 62, 615-626. https://doi.org/10.1002/hep.27645
  48. Pirazzi, C., Valenti, L., Motta, B.M., Pingitore, P., Hedfalk, K., Mancina, R.M., Burza, M.A., Indiveri, C., Ferro, Y., Montalcini, T., et al. (2014). PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum. Mol. Genet. 23, 4077-4085. https://doi.org/10.1093/hmg/ddu121
  49. Rodriguez-Navarro, J.A., Kaushik, S., Koga, H., Dall'Armi, C., Shui, G., Wenk, M.R., Di Paolo, G., and Cuervo, A.M. (2012). Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc. Natl. Acad. Sci. U. S. A. 109, E705-E714. https://doi.org/10.1073/pnas.1113036109
  50. Rogov, V., Dotsch, V., Johansen, T., and Kirkin, V. (2014). Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell 53, 167-178. https://doi.org/10.1016/j.molcel.2013.12.014
  51. Samuel, V.T. and Shulman, G.I. (2018). Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab. 27, 22-41. https://doi.org/10.1016/j.cmet.2017.08.002
  52. Sathyanarayan, A., Mashek, M.T., and Mashek, D.G. (2017). ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell Rep. 19, 1-9. https://doi.org/10.1016/j.celrep.2017.03.026
  53. Schon, H.T., Bartneck, M., Borkham-Kamphorst, E., Nattermann, J., Lammers, T., Tacke, F., and Weiskirchen, R. (2016). Pharmacological intervention in hepatic stellate cell activation and hepatic fibrosis. Front. Pharmacol. 7, 33.
  54. Schroeder, B., Schulze, R.J., Weller, S.G., Sletten, A.C., Casey, C.A., and McNiven, M.A. (2015). The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 61, 1896-1907. https://doi.org/10.1002/hep.27667
  55. Schulze, R.J., Drizyte, K., Casey, C.A., and McNiven, M.A. (2017a). Hepatic lipophagy: new insights into autophagic catabolism of lipid droplets in the liver. Hepatol. Commun. 1, 359-369. https://doi.org/10.1002/hep4.1056
  56. Schulze, R.J., Rasineni, K., Weller, S.G., Schott, M.B., Schroeder, B., Casey, C.A., and McNiven, M.A. (2017b). Ethanol exposure inhibits hepatocyte lipophagy by inactivating the small guanosine triphosphatase Rab7. Hepatol. Commun. 1, 140-152. https://doi.org/10.1002/hep4.1021
  57. Schulze, R.J., Sathyanarayan, A., and Mashek, D.G. (2017c). Breaking fat:the regulation and mechanisms of lipophagy. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 1178-1187. https://doi.org/10.1016/j.bbalip.2017.06.008
  58. Schuppan, D., Ashfaq-Khan, M., Yang, A.T., and Kim, Y.O. (2018). Liver fibrosis: direct antifibrotic agents and targeted therapies. Matrix Biol. 68-69, 435-451. https://doi.org/10.1016/j.matbio.2018.04.006
  59. Seok, S., Fu, T., Choi, S.E., Li, Y., Zhu, R., Kumar, S., Sun, X., Yoon, G., Kang, Y., and Zhong, W. (2014). Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 516, 108-111. https://doi.org/10.1038/nature13949
  60. Settembre, C., De Cegli, R., Mansueto, G., Saha, P.K., Vetrini, F., Visvikis, O., Huynh, T., Carissimo, A., Palmer, D., and Klisch, T.J. (2013). TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647-658. https://doi.org/10.1038/ncb2718
  61. Shpilka, T., Welter, E., Borovsky, N., Amar, N., Mari, M., Reggiori, F., and Elazar, Z. (2015). Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J. 34, 2117-2131. https://doi.org/10.15252/embj.201490315
  62. Singh, R. and Cuervo, A.M. (2012). Lipophagy: connecting autophagy and lipid metabolism. Int. J. Cell Biol. 2012, 282041.
  63. Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M., and Czaja, M.J. (2009a). Autophagy regulates lipid metabolism. Nature 458, 1131-1135. https://doi.org/10.1038/nature07976
  64. Singh, R., Xiang, Y., Wang, Y., Baikati, K., Cuervo, A.M., Luu, Y.K., Tang, Y., Pessin, J.E., Schwartz, G.J., and Czaja, M.J. (2009b). Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119, 3329-3339. https://doi.org/10.1172/JCI39228
  65. Smith, B.K., Marcinko, K., Desjardins, E.M., Lally, J.S., Ford, R.J., and Steinberg, G.R. (2016). Treatment of nonalcoholic fatty liver disease: role of AMPK. Am. J. Physiol. Endocrinol. Metab. 311, E730-E740. https://doi.org/10.1152/ajpendo.00225.2016
  66. Tanaka, S., Hikita, H., Tatsumi, T., Sakamori, R., Nozaki, Y., Sakane, S., Shiode, Y., Nakabori, T., Saito, Y., and Hiramatsu, N. (2016). Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology 64, 1994-2014. https://doi.org/10.1002/hep.28820
  67. Tansey, J., Sztalryd, C., Gruia-Gray, J., Roush, D., Zee, J., Gavrilova, O., Reitman, M., Deng, C.X., Li, C., and Kimmel, A. (2001). Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc. Natl. Acad. Sci. U. S. A. 98, 6494-6499. https://doi.org/10.1073/pnas.101042998
  68. Tatsumi, T., Takayama, K., Ishii, S., Yamamoto, A., Hara, T., Minami, N., Miyasaka, N., Kubota, T., Matsuura, A., Itakura, E., et al. (2018). Forced lipophagy reveals that lipid droplets are required for early embryonic development in mouse. Development 145, dev161893. https://doi.org/10.1242/dev.161893
  69. Tavernarakis, N., Kounakis, K., Chaniotakis, M., and Markaki, M. (2019). Emerging roles of lipophagy in health and disease. Front. Cell Dev. Biol. 7, 185. https://doi.org/10.3389/fcell.2019.00185
  70. Thoen, L.F., Guimaraes, E.L., Dolle, L., Mannaerts, I., Najimi, M., Sokal, E., and van Grunsven, L.A. (2011). A role for autophagy during hepatic stellate cell activation. J. Hepatol. 55, 1353-1360. https://doi.org/10.1016/j.jhep.2011.07.010
  71. Thomes, P.G., Trambly, C.S., Fox, H.S., Tuma, D.J., and Donohue T.M., Jr. (2015). Acute and chronic ethanol administration differentially modulate hepatic autophagy and transcription factor EB. Alcohol. Clin. Exp. Res. 39, 2354-2363. https://doi.org/10.1111/acer.12904
  72. Thomes, P.G., Trambly, C.S., Thiele, G.M., Duryee, M.J., Fox, H.S., Haorah, J., Donohue, T.M., Jr. (2012). Proteasome activity and autophagosome content in liver are reciprocally regulated by ethanol treatment. Biochem. Biophys. Res. Commun. 417, 262-267. https://doi.org/10.1016/j.bbrc.2011.11.097
  73. Tsuchida, T. and Friedman, S.L. (2017). Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14, 397-411. https://doi.org/10.1038/nrgastro.2017.38
  74. Wang, C.W. (2016). Lipid droplets, lipophagy, and beyond. Biochim. Biophys. Acta 1861, 793-805. https://doi.org/10.1016/j.bbalip.2015.12.010
  75. Wang, L., Khambu, B., Zhang, H., and Yin, X.M. (2015). Autophagy in alcoholic liver disease, self-eating triggered by drinking. Clin. Res. Hepatol. Gastroenterol. 39, S2-S6. https://doi.org/10.1016/j.clinre.2015.05.023
  76. Ward, C., Martinez-Lopez, N., Otten, E.G., Carroll, B., Maetzel, D., Singh, R., Sarkar, S., and Korolchuk, V.I. (2016). Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim. Biophys. Acta 1861, 269-284. https://doi.org/10.1016/j.bbalip.2016.01.006
  77. Wilfling, F., Haas, J.T., Walther, T.C., and Farese, R.V., Jr. (2014). Lipid droplet biogenesis. Curr. Opin. Cell Biol. 29, 39-45. https://doi.org/10.1016/j.ceb.2014.03.008
  78. Wu, W., Zhu, B., Peng, X., Zhou, M., Jia, D., and Gu, J. (2014). Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease. Biochem. Biophys. Res. Commun. 443, 68-73. https://doi.org/10.1016/j.bbrc.2013.11.057
  79. Xiong, J., Wang, K., He, J., Zhang, G., Zhang, D., and Chen, F. (2016). TFE3 alleviates hepatic steatosis through autophagy-induced lipophagy and $PGC1{\alpha}$-mediated fatty acid ${\beta}$-Oxidation. Int. J. Mol. Sci. 17, 387. https://doi.org/10.3390/ijms17030387
  80. Xu, X., Grijalva, A., Skowronski, A., van Eijk, M., Serlie, M.J., and Ferrante, A.W., Jr. (2013). Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 18, 816-830. https://doi.org/10.1016/j.cmet.2013.11.001
  81. Yang, L., Li, P., Fu, S., Calay, E.S., and Hotamisligil, G.S. (2010). Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467-478. https://doi.org/10.1016/j.cmet.2010.04.005
  82. Zechner, R., Madeo, F., and Kratky, D. (2017). Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat. Rev. Mol. Cell Biol. 18, 671-684. https://doi.org/10.1038/nrm.2017.76
  83. Zhang, H., Yan, S., Khambu, B., Ma, F., Li, Y., Chen, X., Martina, J.A., Puertollano, R., Li, Y., and Chalasani, N. (2018a). Dynamic MTORC1-TFEB feedback signaling regulates hepatic autophagy, steatosis and liver injury in long-term nutrient oversupply. Autophagy 14, 1779-1795. https://doi.org/10.1080/15548627.2018.1490850
  84. Zhang, T., Liu, J., Tong, Q., and Lin, L. (2020). SIRT3 acts as a positive autophagy regulator to promote lipid mobilization in adipocytes via activating AMPK. Int. J. Mol. Sci. 21, E372. https://doi.org/10.3390/ijms21020372
  85. Zhang, Z., Yao, Z., Chen, Y., Qian, L., Jiang, S., Zhou, J., Shao, J., Chen, A., Zhang, F., and Zheng, S. (2018b). Lipophagy and liver disease: new perspectives to better understanding and therapy. Biomed. Pharmacother. 97, 339-348. https://doi.org/10.1016/j.biopha.2017.07.168
  86. Zhang, Z., Zhao, S., Yao, Z., Wang, L., Shao, J., Chen, A., Zhang, F., and Zheng, S. (2017). Autophagy regulates turnover of lipid droplets via ROSdependent Rab25 activation in hepatic stellate cell. Redox Biol. 11, 322-334. https://doi.org/10.1016/j.redox.2016.12.021
  87. Zhao, N., Guo, F.F., Xie, K.Q., and Zeng, T. (2018). Targeting Nrf-2 is a promising intervention approach for the prevention of ethanol-induced liver disease. Cell. Mol. Life Sci. 75, 3143-3157. https://doi.org/10.1007/s00018-018-2852-6
  88. Zhu, S., Wu, Y., Ye, X., Ma, L., Qi, J., Yu, D., Wei, Y., Lin, G., Ren, G., and Li, D. (2016). FGF21 ameliorates nonalcoholic fatty liver disease by inducing autophagy. Mol. Cell. Biochem. 420, 107-119. https://doi.org/10.1007/s11010-016-2774-2
  89. Zubiete-Franco, I., Garcia-Rodriguez, J.L., Martinez-Una, M., Martinez-Lopez, N., Woodhoo, A., Juan, V.G., Beraza, N., Lage-Medina, S., Andrade, F., Fernandez, M.L., et al. (2016). Methionine and S-adenosylmethionine levels are critical regulators of PP2A activity modulating lipophagy during steatosis. J. Hepatol. 64, 409-418. https://doi.org/10.1016/j.jhep.2015.08.037

피인용 문헌

  1. Lipophagy: A New Perspective of Natural Products in Type 2 Diabetes Mellitus Treatment vol.14, 2020, https://doi.org/10.2147/dmso.s310166
  2. The FMRFamide Neuropeptide FLP-20 Acts as a Systemic Signal for Starvation Responses in Caenorhabditis elegans vol.44, pp.7, 2020, https://doi.org/10.14348/molcells.2021.0051
  3. Roles of IκB kinases and TANK-binding kinase 1 in hepatic lipid metabolism and nonalcoholic fatty liver disease vol.53, pp.11, 2020, https://doi.org/10.1038/s12276-021-00712-w