참고문헌
- Baerga, R., Zhang, Y., Chen, P.H., Goldman, S., and Jin, S.V. (2009). Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy 5, 1118-1130. https://doi.org/10.4161/auto.5.8.9991
- Barbato, D.L., Tatulli, G., Aquilano, K., and Ciriolo, M. (2013). FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment. Cell Death Dis. 4, e861. https://doi.org/10.1038/cddis.2013.404
- Bruschi, F.V., Claudel, T., Tardelli, M., Caligiuri, A., Stulnig, T.M., Marra, F., and Trauner, M. (2017). The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology 65, 1875-1890. https://doi.org/10.1002/hep.29041
- Byun, S., Seok, S., Kim, Y.C., Zhang, Y., Yau, P., Iwamori, N., Xu, H.E., Ma, J., Kemper, B., and Kemper, J.K. (2020). Fasting-induced FGF21 signaling activates hepatic autophagy and lipid degradation via JMJD3 histone demethylase. Nat. Commun. 11, 807. https://doi.org/10.1038/s41467-020-14384-z
- Cai, J., Pires, K.M., Ferhat, M., Chaurasia, B., Buffolo, M.A., Smalling, R., Sargsyan, A., Atkinson, D.L., Summers, S.A., Graham, T.E., et al. (2018). Autophagy ablation in adipocytes induces insulin resistance and reveals roles for lipid peroxide and Nrf2 signaling in adipose-liver crosstalk. Cell Rep. 25, 1708-1717.e5. https://doi.org/10.1016/j.celrep.2018.10.040
- Chao, X., Wang, S., Zhao, K., Li, Y., Williams, J.A., Li, T., Chavan, H., Krishnamurthy, P., He, X.C., and Li, L. (2018). Impaired TFEB-mediated lysosome biogenesis and autophagy promote chronic ethanol-induced liver injury and steatosis in mice. Gastroenterology 155, 865-879.e12. https://doi.org/10.1053/j.gastro.2018.05.027
- Deng, X., Pan, X., Cheng, C., Liu, B., Zhang, H., Zhang, Y., and Xu, K. (2017). Regulation of SREBP-2 intracellular trafficking improves impaired autophagic flux and alleviates endoplasmic reticulum stress in NAFLD. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 337-350. https://doi.org/10.1016/j.bbalip.2016.12.007
- Ding, W.X., Li, M., Chen, X., Ni, H.M., Lin, C.W., Gao, W., Lu, B., Stolz, D.B., Clemens, D.L., and Yin, X.M. (2010). Autophagy reduces acute ethanolinduced hepatotoxicity and steatosis in mice. Gastroenterology 139, 1740-1752. https://doi.org/10.1053/j.gastro.2010.07.041
- Ding, W.X., Manley, S., and Ni, H.M. (2011). The emerging role of autophagy in alcoholic liver disease. Exp. Biol. Med. (Maywood) 236, 546-556. https://doi.org/10.1258/ebm.2011.010360
- Ducharme, N.A. and Bickel, P.E. (2008). Lipid droplets in lipogenesis and lipolysis. Endocrinology 149, 942-949. https://doi.org/10.1210/en.2007-1713
- Dupont, N., Chauhan, S., Arko-Mensah, J., Castillo, E.F., Masedunskas, A., Weigert, R., Robenek, H., Proikas-Cezanne, T., and Deretic, V. (2014). Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr. Biol. 24, 609-620. https://doi.org/10.1016/j.cub.2014.02.008
- Fredrikson, G., Tornqvist, H., and Belfrage, P. (1986). Hormone-sensitive lipase and monoacylglycerol lipase are both required for complete degradation of adipocyte triacylglycerol. Biochim. Biophys. Acta 876, 288-293. https://doi.org/10.1016/0005-2760(86)90286-9
- Fu, X., Jin, L., Han, L., Yuan, Y., Mu, Q., Wang, H., Yang, J., Ning, G., Zhou, D., and Zhang, Z. (2019). miR-129-5p inhibits adipogenesis through autophagy and may be a potential biomarker for obesity. Int. J. Endocrinol. 2019, 5069578.
- Goldman, S., Zhang, Y., and Jin, S. (2010). Autophagy and adipogenesis:implications in obesity and type II diabetes. Autophagy 6, 179-181. https://doi.org/10.4161/auto.6.1.10814
- Grumet, L., Eichmann, T.O., Taschler, U., Zierler, K.A., Leopold, C., Moustafa, T., Radovic, B., Romauch, M., Yan, C., and Du, H. (2016). Lysosomal acid lipase hydrolyzes retinyl ester and affects retinoid turnover. J. Biol. Chem. 291, 17977-17987. https://doi.org/10.1074/jbc.M116.724054
- Hansen, J.S., de Mare, S., Jones, H.A., Goransson, O., and Lindkvist-Petersson, K. (2017). Visualization of lipid directed dynamics of perilipin 1 in human primary adipocytes. Sci. Rep. 7, 15011. https://doi.org/10.1038/s41598-017-15059-4
- Hernandez-Gea, V., Ghiassi-Nejad, Z., Rozenfeld, R., Gordon, R., Fiel, M.I., Yue, Z., Czaja, M.J., and Friedman, S.L. (2012). Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142, 938-946. https://doi.org/10.1053/j.gastro.2011.12.044
- Iredale, J.P., Thompson, A., and Henderson, N.C. (2013). Extracellular matrix degradation in liver fibrosis: biochemistry and regulation. Biochim. Biophys. Acta 1832, 876-883. https://doi.org/10.1016/j.bbadis.2012.11.002
-
Jung, H.S., Chung, K.W., Kim, J.W., Kim, J., Komatsu, M., Tanaka, K., Nguyen, Y.H., Kang, T.M., Yoon, K.H., and Kim, J.W. (2008). Loss of autophagy diminishes pancreatic
${\beta}$ cell mass and function with resultant hyperglycemia. Cell Metab. 8, 318-324. https://doi.org/10.1016/j.cmet.2008.08.013 - Kaushik, S. and Cuervo, A.M. (2015). Degradation of lipid dropletassociated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 17, 759-770. https://doi.org/10.1038/ncb3166
- Kim, J., Lim, Y.M., and Lee, M.S. (2018). The role of autophagy in systemic metabolism and human-type diabetes. Mol. Cells 41, 11-17. https://doi.org/10.14348/MOLCELLS.2018.2228
- Kim, K.H., Jeong, Y.T., Oh, H., Kim, S.H., Cho, J.M., Kim, Y.N., Kim, S.S., Kim, D.H., Hur, K.Y., and Kim, H.K. (2013). Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19, 83. https://doi.org/10.1038/nm.3014
- Kim, K.Y., Jang, H.J., Yang, Y.R., Park, K.I., Seo, J., Shin, I.W., Jeon, T.I., Ahn, S.C., Suh, P.G., and Osborne, T.F. (2016). SREBP-2/PNPLA8 axis improves non-alcoholic fatty liver disease through activation of autophagy. Sci. Rep. 6, 1-14. https://doi.org/10.1038/s41598-016-0001-8
- Kimmel, A.R. and Sztalryd, C. (2016). The perilipins: major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Ann. Rev. Nutr. 36, 471-509. https://doi.org/10.1146/annurev-nutr-071813-105410
- Kiss, R.S. and Nilsson, T. (2014). Rab proteins implicated in lipid storage and mobilization. J. Biomed. Res. 28, 169.
- Kleinert, M., Clemmensen, C., Hofmann, S.M., Moore, M.C., Renner, S., Woods, S.C., Huypens, P., Beckers, J., de Angelis, M.H., Schurmann, A., et al. (2018). Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 14, 140-162. https://doi.org/10.1038/nrendo.2017.161
- Koga, H., Kaushik, S., and Cuervo, A.M. (2010). Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 24, 3052-3065. https://doi.org/10.1096/fj.09-144519
- Kosacka, J., Kern, M., Kloting, N., Paeschke, S., Rudich, A., Haim, Y., Gericke, M., Serke, H., Stumvoll, M., Bechmann, I., et al. (2015). Autophagy in adipose tissue of patients with obesity and type 2 diabetes. Mol. Cell. Endocrinol. 409, 21-32. https://doi.org/10.1016/j.mce.2015.03.015
- Kurahashi, T., Hamashima, S., Shirato, T., Lee, J., Homma, T., Kang, E.S., and Fujii, J. (2015). An SOD1 deficiency enhances lipid droplet accumulation in the fasted mouse liver by aborting lipophagy. Biochem. Biophys. Res. Commun. 467, 866-871. https://doi.org/10.1016/j.bbrc.2015.10.052
- Levine, B. and Kroemer, G. (2019). Biological functions of autophagy genes: a disease perspective. Cell 176, 11-42. https://doi.org/10.1016/j.cell.2018.09.048
- Li, Y., Yang, P., Zhao, L., Chen, Y., Zhang, X., Zeng, S., Wei, L., Varghese, Z., Moorhead, J.F., and Chen, Y. (2019). CD36 plays a negative role in the regulation of lipophagy in hepatocytes through an AMPK-dependent pathway. J. Lipid Res. 60, 844-855. https://doi.org/10.1194/jlr.M090969
- Li, Z., Schulze, R.J., Weller, S.G., Krueger, E.W., Schott, M.B., Zhang, X., Casey, C.A., Liu, J., Stockli, J., and James, D.E. (2016). A novel Rab10-EHBP1-EHD2 complex essential for the autophagic engulfment of lipid droplets. Sci. Adv. 2, e1601470. https://doi.org/10.1126/sciadv.1601470
- Lim, H., Lim, Y.M., Kim, K.H., Jeon, Y.E., Park, K., Kim, J., Hwang, H.Y., Lee, D.J., Pagire, H., and Kwon, H.J. (2018). A novel autophagy enhancer as a therapeutic agent against metabolic syndrome and diabetes. Nat. Commun. 9, 1-14. https://doi.org/10.1038/s41467-017-02088-w
- Lin, Y.C., Chang, P.F., Lin, H.F., Liu, K., Chang, M.H., and Ni, Y.H. (2016). Variants in the autophagy-related gene IRGM confer susceptibility to nonalcoholic fatty liver disease by modulating lipophagy. J. Hepatol. 65, 1209-1216. https://doi.org/10.1016/j.jhep.2016.06.029
- Liu, J., Li, Y., Zhou, X., Zhang, X., Meng, H., Liu, S., Zhang, L., He, J., He, Q., and Geng, Y. (2020). CaMKIV limits metabolic damage through induction of hepatic autophagy by CREB in obese mice. J. Endocrinol. 244, 353-367. https://doi.org/10.1530/JOE-19-0251
- Liu, K. and Czaja, M.J. (2013). Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 20, 3-11. https://doi.org/10.1038/cdd.2012.63
- Liu, Y., Takahashi, Y., Desai, N., Zhang, J., Serfass, J.M., Shi, Y.G., Lynch, C.J., and Wang, H.G. (2016). Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci. Rep. 6, 20453. https://doi.org/10.1038/srep20453
- Livero, F.A. and Acco, A. (2016). Molecular basis of alcoholic fatty liver disease: from incidence to treatment. Hepatol. Res. 46, 111-123. https://doi.org/10.1111/hepr.12594
-
Lizaso, A., Tan, K.T., and Lee, Y.H. (2013).
${\beta}$ -adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation. Autophagy 9, 1228-1243. https://doi.org/10.4161/auto.24893 - Lu, N.S., Chiu, W.C., Chen, Y.L., Peng, H.C., Shirakawa, H., and Yang, S.C. (2020). Fish oil up-regulates hepatic autophagy in rats with chronic ethanol consumption. J. Nutr. Biochem. 77, 108314. https://doi.org/10.1016/j.jnutbio.2019.108314
- Lu, W., Mei, J., Yang, J., Wu, Z., Liu, J., Miao, P., Chen, Y., Wen, Z., Zhao, Z., Kong, H., et al. (2020). ApoE deficiency promotes non-alcoholic fatty liver disease in mice via impeding AMPK/mTOR mediated autophagy. Life Sci. 252, 117601. https://doi.org/10.1016/j.lfs.2020.117601
- Lu, Y. and Cederbaum, A.I. (2018). Cytochrome P450s and alcoholic liver disease. Curr. Pharm. Des. 24, 1502-1517. https://doi.org/10.2174/1381612824666180410091511
- Martinez-Lopez, N., Garcia-Macia, M., Sahu, S., Athonvarangkul, D., Liebling, E., Merlo, P., Cecconi, F., Schwartz, G.J., and Singh, R. (2016). Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver. Cell Metab. 23, 113-127. https://doi.org/10.1016/j.cmet.2015.10.008
- Miyamae, Y., Nishito, Y., Nakai, N., Nagumo, Y., Usui, T., Masuda, S., Kambe, T., and Nagao, M. (2016). Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line. Biochem. Biophys. Res. Commun. 477, 40-46. https://doi.org/10.1016/j.bbrc.2016.06.018
- Negoita, F., Blomdahl, J., Wasserstrom, S., Winberg, M.E., Osmark, P., Larsson, S., Stenkula, K.G., Ekstedt, M., Kechagias, S., and Holm, C. (2019). PNPLA3 variant M148 causes resistance to starvation-mediated lipid droplet autophagy in human hepatocytes. J. Cell. Biochem. 120, 343-356. https://doi.org/10.1002/jcb.27378
- Ni, H.M., Williams, J.A., Yang, H., Shi, Y.H., Fan, J., and Ding, W.X. (2012). Targeting autophagy for the treatment of liver diseases. Pharmacol. Res. 66, 463-474. https://doi.org/10.1016/j.phrs.2012.07.003
- O’Mahony, F., Wroblewski, K., O’Byrne, S.M., Jiang, H., Clerkin, K., Benhammou, J., Blaner, W.S., and Beaven, S.W. (2015). Liver X receptors balance lipid stores in hepatic stellate cells through Rab18, a retinoid responsive lipid droplet protein. Hepatology 62, 615-626. https://doi.org/10.1002/hep.27645
- Pirazzi, C., Valenti, L., Motta, B.M., Pingitore, P., Hedfalk, K., Mancina, R.M., Burza, M.A., Indiveri, C., Ferro, Y., Montalcini, T., et al. (2014). PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum. Mol. Genet. 23, 4077-4085. https://doi.org/10.1093/hmg/ddu121
- Rodriguez-Navarro, J.A., Kaushik, S., Koga, H., Dall'Armi, C., Shui, G., Wenk, M.R., Di Paolo, G., and Cuervo, A.M. (2012). Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc. Natl. Acad. Sci. U. S. A. 109, E705-E714. https://doi.org/10.1073/pnas.1113036109
- Rogov, V., Dotsch, V., Johansen, T., and Kirkin, V. (2014). Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell 53, 167-178. https://doi.org/10.1016/j.molcel.2013.12.014
- Samuel, V.T. and Shulman, G.I. (2018). Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab. 27, 22-41. https://doi.org/10.1016/j.cmet.2017.08.002
- Sathyanarayan, A., Mashek, M.T., and Mashek, D.G. (2017). ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell Rep. 19, 1-9. https://doi.org/10.1016/j.celrep.2017.03.026
- Schon, H.T., Bartneck, M., Borkham-Kamphorst, E., Nattermann, J., Lammers, T., Tacke, F., and Weiskirchen, R. (2016). Pharmacological intervention in hepatic stellate cell activation and hepatic fibrosis. Front. Pharmacol. 7, 33.
- Schroeder, B., Schulze, R.J., Weller, S.G., Sletten, A.C., Casey, C.A., and McNiven, M.A. (2015). The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 61, 1896-1907. https://doi.org/10.1002/hep.27667
- Schulze, R.J., Drizyte, K., Casey, C.A., and McNiven, M.A. (2017a). Hepatic lipophagy: new insights into autophagic catabolism of lipid droplets in the liver. Hepatol. Commun. 1, 359-369. https://doi.org/10.1002/hep4.1056
- Schulze, R.J., Rasineni, K., Weller, S.G., Schott, M.B., Schroeder, B., Casey, C.A., and McNiven, M.A. (2017b). Ethanol exposure inhibits hepatocyte lipophagy by inactivating the small guanosine triphosphatase Rab7. Hepatol. Commun. 1, 140-152. https://doi.org/10.1002/hep4.1021
- Schulze, R.J., Sathyanarayan, A., and Mashek, D.G. (2017c). Breaking fat:the regulation and mechanisms of lipophagy. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 1178-1187. https://doi.org/10.1016/j.bbalip.2017.06.008
- Schuppan, D., Ashfaq-Khan, M., Yang, A.T., and Kim, Y.O. (2018). Liver fibrosis: direct antifibrotic agents and targeted therapies. Matrix Biol. 68-69, 435-451. https://doi.org/10.1016/j.matbio.2018.04.006
- Seok, S., Fu, T., Choi, S.E., Li, Y., Zhu, R., Kumar, S., Sun, X., Yoon, G., Kang, Y., and Zhong, W. (2014). Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 516, 108-111. https://doi.org/10.1038/nature13949
- Settembre, C., De Cegli, R., Mansueto, G., Saha, P.K., Vetrini, F., Visvikis, O., Huynh, T., Carissimo, A., Palmer, D., and Klisch, T.J. (2013). TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647-658. https://doi.org/10.1038/ncb2718
- Shpilka, T., Welter, E., Borovsky, N., Amar, N., Mari, M., Reggiori, F., and Elazar, Z. (2015). Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J. 34, 2117-2131. https://doi.org/10.15252/embj.201490315
- Singh, R. and Cuervo, A.M. (2012). Lipophagy: connecting autophagy and lipid metabolism. Int. J. Cell Biol. 2012, 282041.
- Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M., and Czaja, M.J. (2009a). Autophagy regulates lipid metabolism. Nature 458, 1131-1135. https://doi.org/10.1038/nature07976
- Singh, R., Xiang, Y., Wang, Y., Baikati, K., Cuervo, A.M., Luu, Y.K., Tang, Y., Pessin, J.E., Schwartz, G.J., and Czaja, M.J. (2009b). Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119, 3329-3339. https://doi.org/10.1172/JCI39228
- Smith, B.K., Marcinko, K., Desjardins, E.M., Lally, J.S., Ford, R.J., and Steinberg, G.R. (2016). Treatment of nonalcoholic fatty liver disease: role of AMPK. Am. J. Physiol. Endocrinol. Metab. 311, E730-E740. https://doi.org/10.1152/ajpendo.00225.2016
- Tanaka, S., Hikita, H., Tatsumi, T., Sakamori, R., Nozaki, Y., Sakane, S., Shiode, Y., Nakabori, T., Saito, Y., and Hiramatsu, N. (2016). Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology 64, 1994-2014. https://doi.org/10.1002/hep.28820
- Tansey, J., Sztalryd, C., Gruia-Gray, J., Roush, D., Zee, J., Gavrilova, O., Reitman, M., Deng, C.X., Li, C., and Kimmel, A. (2001). Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc. Natl. Acad. Sci. U. S. A. 98, 6494-6499. https://doi.org/10.1073/pnas.101042998
- Tatsumi, T., Takayama, K., Ishii, S., Yamamoto, A., Hara, T., Minami, N., Miyasaka, N., Kubota, T., Matsuura, A., Itakura, E., et al. (2018). Forced lipophagy reveals that lipid droplets are required for early embryonic development in mouse. Development 145, dev161893. https://doi.org/10.1242/dev.161893
- Tavernarakis, N., Kounakis, K., Chaniotakis, M., and Markaki, M. (2019). Emerging roles of lipophagy in health and disease. Front. Cell Dev. Biol. 7, 185. https://doi.org/10.3389/fcell.2019.00185
- Thoen, L.F., Guimaraes, E.L., Dolle, L., Mannaerts, I., Najimi, M., Sokal, E., and van Grunsven, L.A. (2011). A role for autophagy during hepatic stellate cell activation. J. Hepatol. 55, 1353-1360. https://doi.org/10.1016/j.jhep.2011.07.010
- Thomes, P.G., Trambly, C.S., Fox, H.S., Tuma, D.J., and Donohue T.M., Jr. (2015). Acute and chronic ethanol administration differentially modulate hepatic autophagy and transcription factor EB. Alcohol. Clin. Exp. Res. 39, 2354-2363. https://doi.org/10.1111/acer.12904
- Thomes, P.G., Trambly, C.S., Thiele, G.M., Duryee, M.J., Fox, H.S., Haorah, J., Donohue, T.M., Jr. (2012). Proteasome activity and autophagosome content in liver are reciprocally regulated by ethanol treatment. Biochem. Biophys. Res. Commun. 417, 262-267. https://doi.org/10.1016/j.bbrc.2011.11.097
- Tsuchida, T. and Friedman, S.L. (2017). Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14, 397-411. https://doi.org/10.1038/nrgastro.2017.38
- Wang, C.W. (2016). Lipid droplets, lipophagy, and beyond. Biochim. Biophys. Acta 1861, 793-805. https://doi.org/10.1016/j.bbalip.2015.12.010
- Wang, L., Khambu, B., Zhang, H., and Yin, X.M. (2015). Autophagy in alcoholic liver disease, self-eating triggered by drinking. Clin. Res. Hepatol. Gastroenterol. 39, S2-S6. https://doi.org/10.1016/j.clinre.2015.05.023
- Ward, C., Martinez-Lopez, N., Otten, E.G., Carroll, B., Maetzel, D., Singh, R., Sarkar, S., and Korolchuk, V.I. (2016). Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim. Biophys. Acta 1861, 269-284. https://doi.org/10.1016/j.bbalip.2016.01.006
- Wilfling, F., Haas, J.T., Walther, T.C., and Farese, R.V., Jr. (2014). Lipid droplet biogenesis. Curr. Opin. Cell Biol. 29, 39-45. https://doi.org/10.1016/j.ceb.2014.03.008
- Wu, W., Zhu, B., Peng, X., Zhou, M., Jia, D., and Gu, J. (2014). Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease. Biochem. Biophys. Res. Commun. 443, 68-73. https://doi.org/10.1016/j.bbrc.2013.11.057
-
Xiong, J., Wang, K., He, J., Zhang, G., Zhang, D., and Chen, F. (2016). TFE3 alleviates hepatic steatosis through autophagy-induced lipophagy and
$PGC1{\alpha}$ -mediated fatty acid${\beta}$ -Oxidation. Int. J. Mol. Sci. 17, 387. https://doi.org/10.3390/ijms17030387 - Xu, X., Grijalva, A., Skowronski, A., van Eijk, M., Serlie, M.J., and Ferrante, A.W., Jr. (2013). Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 18, 816-830. https://doi.org/10.1016/j.cmet.2013.11.001
- Yang, L., Li, P., Fu, S., Calay, E.S., and Hotamisligil, G.S. (2010). Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467-478. https://doi.org/10.1016/j.cmet.2010.04.005
- Zechner, R., Madeo, F., and Kratky, D. (2017). Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat. Rev. Mol. Cell Biol. 18, 671-684. https://doi.org/10.1038/nrm.2017.76
- Zhang, H., Yan, S., Khambu, B., Ma, F., Li, Y., Chen, X., Martina, J.A., Puertollano, R., Li, Y., and Chalasani, N. (2018a). Dynamic MTORC1-TFEB feedback signaling regulates hepatic autophagy, steatosis and liver injury in long-term nutrient oversupply. Autophagy 14, 1779-1795. https://doi.org/10.1080/15548627.2018.1490850
- Zhang, T., Liu, J., Tong, Q., and Lin, L. (2020). SIRT3 acts as a positive autophagy regulator to promote lipid mobilization in adipocytes via activating AMPK. Int. J. Mol. Sci. 21, E372. https://doi.org/10.3390/ijms21020372
- Zhang, Z., Yao, Z., Chen, Y., Qian, L., Jiang, S., Zhou, J., Shao, J., Chen, A., Zhang, F., and Zheng, S. (2018b). Lipophagy and liver disease: new perspectives to better understanding and therapy. Biomed. Pharmacother. 97, 339-348. https://doi.org/10.1016/j.biopha.2017.07.168
- Zhang, Z., Zhao, S., Yao, Z., Wang, L., Shao, J., Chen, A., Zhang, F., and Zheng, S. (2017). Autophagy regulates turnover of lipid droplets via ROSdependent Rab25 activation in hepatic stellate cell. Redox Biol. 11, 322-334. https://doi.org/10.1016/j.redox.2016.12.021
- Zhao, N., Guo, F.F., Xie, K.Q., and Zeng, T. (2018). Targeting Nrf-2 is a promising intervention approach for the prevention of ethanol-induced liver disease. Cell. Mol. Life Sci. 75, 3143-3157. https://doi.org/10.1007/s00018-018-2852-6
- Zhu, S., Wu, Y., Ye, X., Ma, L., Qi, J., Yu, D., Wei, Y., Lin, G., Ren, G., and Li, D. (2016). FGF21 ameliorates nonalcoholic fatty liver disease by inducing autophagy. Mol. Cell. Biochem. 420, 107-119. https://doi.org/10.1007/s11010-016-2774-2
- Zubiete-Franco, I., Garcia-Rodriguez, J.L., Martinez-Una, M., Martinez-Lopez, N., Woodhoo, A., Juan, V.G., Beraza, N., Lage-Medina, S., Andrade, F., Fernandez, M.L., et al. (2016). Methionine and S-adenosylmethionine levels are critical regulators of PP2A activity modulating lipophagy during steatosis. J. Hepatol. 64, 409-418. https://doi.org/10.1016/j.jhep.2015.08.037
피인용 문헌
- Lipophagy: A New Perspective of Natural Products in Type 2 Diabetes Mellitus Treatment vol.14, 2020, https://doi.org/10.2147/dmso.s310166
- The FMRFamide Neuropeptide FLP-20 Acts as a Systemic Signal for Starvation Responses in Caenorhabditis elegans vol.44, pp.7, 2020, https://doi.org/10.14348/molcells.2021.0051
- Roles of IκB kinases and TANK-binding kinase 1 in hepatic lipid metabolism and nonalcoholic fatty liver disease vol.53, pp.11, 2020, https://doi.org/10.1038/s12276-021-00712-w