참고문헌
- Minster of Trade, Industry and Energy, "The third energy basic plan (2019-2040)", Minster of Trade, Industry and Energy, 2019, pp. 24-33. Retrieved from http://www.motie.go.kr/motie/py/brf/motiebriefing/motiebriefing402.do?brf_code_v=402#header.
- Minster of Trade, Industry and Energy, "Korea hydrogen economy policy 2040", Minster of Trade, Industry and Energy, 2019, pp. 3-4. Retrieved from https://www.motie.go.kr/common/download.do?fid=bbs&bbs_cd_n=81&bbs_seq_n=161262&file_seq_n=2.
- ETN Global, "Hydrogen gas turbines - the path towards a zero-carbon gas turbine", ETN Global, 2020, pp. 2, 10-11. Retrieved from https://etn.global/wp-content/uploads/2020/02/ETN-Hydrogen-Gas-Turbines-report.pdf.
- National Assembly Budget Office, "Fine dust control special measures status and improvement tasks", National Assembly Budget Office, 2016, pp. 70-71. Retrieved from https://www.nabo.go.kr/Sub/04Etc/04_Search.jsp?query=%EB%AF%B8%EC%84%B8%EB%A8%BC%EC%A7%80.
- N. Kim, "Study on operation method of the electrical power market considering the environmental merit order", Korea Energy Economics Institute, 2017, pp. 3. Retrieved from http://www.keei.re.kr/web_keei/d_results.nsf/0/3DD0BCA0D73E6619492582BB00800431/$file/17-01_%EC%88%98%EC%8B%9C_%ED%99%98%EA%B2%BD%EA%B8%89%EC%A0%84%EC%9D%84%20%EA%B3%A0%EB%A0%A4%ED%95%9C%20%EC%A0%84%EB%A0%A5%EC%8B%9C%EC%9E%A5%20%EC%9A%B4%EC%98%81%EB%B0%A9%EC%95%88%20%EC%97%B0%EA%B5%AC.pdf.
- J. Goldmeer, "Power to gas: hydrogen for power generationfuel flexible gas turbines as enablers for a low or reduced carbon energy ecosystem(GEA33861)", GE power, 2019, pp. 7-9, 11. Retrieved from https://www.ge.com/content/dam/gepower/global/en_US/documents/fuel-flexibility/GEA33861%20Power%20to%20Gas%20-%20Hydrogen%20for%20Power%20Generation.pdf.
- Elna J. K. Nisson, C. Brackmann, A. Abou-Taouk, J. Larffldt and D. Moell, "Hydrogen addition to flames at gas-turbine relevant conditions(Report2017:391)", Energiforsk, Sweden, 2017, pp. 34. Retrieved from https://energiforskmedia.blob.core.windows.net/media/22508/hydrogen-additionto-flames-energiforskrapport-2017-391.pdf.
- H. Miao, L. Lu, and Z. Huang, "Flammability limits of hydrogen-enriched natural gas", Int. J. Hydrogen Energy, Vol. 36, No. 11, 2011, pp. 6937-6947, doi: https://doi.org/10.1016/j.ijhydene.2011.02.126.
- E. S. Cho and S. H Chung, "Improvement of flame stability and NOx reduction in hydrogen-added ultra lean premixed combustion", Journal of Mechanical Science and Technology, Vol. 23, No. 3, 2009, pp. 650-658, doi: https://dx.doi.org/10.1007/s12206-008-1223-x.
- R. Lieve, "Flexibility upgrades for future energy", KicMPi Project 6-25 Seminar, 2019, pp. 10, 26. Retrieved from https://www.kicmpi.com/sites/default/files/2019-10/pitch_3_-_ansaldo_thomassen.pdf.
- "Gas turbine fuel system", Retrieved from http://gasturbin etutorial.blogspot.com/2013/06/gas-turbine-fuel-system.html.
- S. Theron, "Major enhancements in FLOWNEX 2015: combustors, importers, and pipes", PADT, 2015. Retrieved from https://www.padtinc.com/blog/major-enhancementsin-flownex-2015-combustors-importers-and-pipes/.
- Seik Park, "The study for LH gas including syn-fuel compatibility on MHPS gas turbine(Final Report)", KEPCO Research Institute, Daejeon, 2019, pp. 9-10, 41-42.
- D. Kim, "Review on the development trend of hydrogen g as turbine combustion technology", J. Korean Soc. Combust., Vol. 24, No. 4, 2019, pp. 1-10, doi: http://dx.doi.org/10.15231/jksc.2019.24.4.001.
- M. Zajadatz, F. Güthe, E. Freitag, T. Ferreira-Providakis, T. Wind, F. Magni, and J. Goldmeer, "Extended range of fuel capability for GT13E2 AEV burner with liquid and gaseous fuels", Proceeding of ASME Turbo Expo, 2018, pp. GT2018-76374, doi: https://doi.org/10.1115/GT2018-76374.
- M. Andersson, J. Larfeldt, and A. Larsson, "Co-firing with hydrogen in industrial gas turbines", Swedish Gas Technology Centre, 2013, pp. 25-30. Retrieved from http://www.sgc.se/ckfinder/userfiles/files/SGC256.pdf.
- J. Larfeldt, "Hydrogen co-firing in Siemens low NOx industrial gas turbines", Proceeding of Power-Gen Europe, Germany, 2017, pp. 1-12. Retrieved from https://www.semanticscholar.org/paper/Hydrogen-Co-Firing-in-Siemens-Low-NOX-Industrial-Larfeldt/37fd8e07212bf1e60f6db535d6e422b11880b816.
- T. Wind, F. Güthe, and K. Syed, "Co-firing of hydrogen and natural gases in lean premixed conventional and reheat burners (Alstom GT26)", Proceeding of ASME Turbo Expo 2014, pp. GT2014-25813, doi: https://doi.org/10.1115/GT2014-25813.
- Ansaldo Energia, "Time to face our world's Biggest CH2allenge", Ansaldo Eergia Product Brochure, 2020, pp. 3-4. Retrieved from https://www.ansaldoenergia.com/PublishingImages/Idrogeno/Ansaldo-Energia-H2.pdf.
- E. Yang and J. Yim, "Analysis on the background and key contents of Japanese hytdrogen basic strategy", World Energy Market Insight, Vol. 18, No. 44, 2018, pp. 14-15. Retrieved from http://www.keei.re.kr/keei/download/WEMI1844.pdf.
- T. Asai, Y. Akiyama, and S. Dodo, "Recent advances in carbon capture and storage. Chapter.1. Development of a state-ofthe-art dry low NOx gas turbine combustor for IGCC with CCS", INTECH, 2017, pp. 7-17, doi: https://dx.doi.org/10.5772/66742.