DOI QR코드

DOI QR Code

LNG 냉열을 이용하는 암모니아-물 랭킨 사이클과 유기 랭킨 사이클의 열역학적 성능 특성 해석

Thermodynamic Performance Analysis of Ammonia-Water Rankine Cycle and Organic Rankine Cycle Using Cold Energy of LNG

  • 김경훈 (금오공과대학교 기계공학과)
  • KIM, KYOUNG HOON (Department of Mechanical Engineering, Kumoh National Institute of Technology)
  • 투고 : 2020.07.06
  • 심사 : 2020.08.30
  • 발행 : 2020.08.30

초록

Recently, the technologies to utilize the cold energy of liquefied natural gas (LNG) have attracted significant attention. In this paper, thermodynamic performance analysis of combined cycles consisting of ammonia Rankine cycle (AWR) and organic Rankine cycle (ORC) with LNG Rankine cycle to recover low-grade heat source and the cold energy of LNG. The mathematical models are developed and the effects of the important system parameters such as turbine inlet pressure, ammonia mass fraction, working fluid on the system performance are systematically investigated. The results show that the thermal efficiency of AWR-LNG cycle is higher but the total power production of ORC-LNG cycle is higher.

키워드

참고문헌

  1. V. Smil, "Natural gas: fuel for the 21st century", John Wiley & Sons, USA, 2015.
  2. T. He, I. A. Karimi, and Y. Ju, "Review on the design and optimization of natural gas liquefaction processes for onshore and offshore applications", Chem. Eng. Res. Des., Vol. 132, 2018, pp. 89-114, doi: https://doi.org/10.1016/j.cherd.2018.01.002.
  3. K. H. Kim, J. H. Oh, and H. J. Ko, "Performance analysis of a combined power cycle utilizing low-temperature heat source and LNG cold energy", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 4, 2012, pp. 382-389, doi: http://dx.doi.org/10.7316/KHNES.2012.23.4.382.
  4. International Gas Union (IGU), "IGU world LNG report - 2017 edition", IGU, 2017. Retrieved from https://www.igu.org/app/uploads-wp/2017/04/103419-World_IGU_Report_FINAL_LR.pdf.
  5. T. He, Z. R. Chong, J. Zheng, Y. Ju, and P. Linga, "LNG cold energy utilization: prospects and challenges", Energy, Vol. 170, 2019, pp. 557-568, doi: https://doi.org/10.1016/j.energy.2018.12.170.
  6. M. R. Gomez, R. F. Garcia, J. R. Gomez, and J. C. Carril, "Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process". Renew. Sustain. Energy Rev., Vol. 38, 2014, pp. 781-795, doi: https://doi.org/10.1016/j.rser.2014.07.029.
  7. K. H. Kim, J. M. Ha, and K. C. Kim, "Effects of working fluids on the performance characteristics of organic rankine cycle (ORC) using lng cold energy as heat sink", Trans. of the Korean Hydrogen and New Energy Society, Vol. 25, No. 2, 2014, pp. 200-208, doi: https://doi.org/10.7316/khnes.2014.25.2.200.
  8. Y. Liu, J. Han, and H. You, "Exergoeconomic analysis and multi-objective optimization of a CCHP system based on LNG cold energy utilization and flue gas waste heat recovery with CO2 capture", Energy, Vol. 190, 2020, pp. 116201, doi: https://doi.org/10.1016/j.energy.2019.116201.
  9. J. Park, F. You , H. Cho , I. Lee, and I. Moon, "Novel massive thermal energy storage system for liquefied natural gas cold energy recovery", Energy, Vol. 195, 2020, pp. 117022, doi: https://doi.org/10.1016/j.energy.2020.117022.
  10. H. M. Chang, B. H. Kim, and B. Choi, "Hydrogen liquefaction process with Brayton refrigeration cycle to utilize the cold energy of LNG", Cryogenics, Vol. 108, 2020, pp. 103093, doi: https://doi.org/10.1016/j.cryogenics.2020.103093.
  11. Y. Liu, J. Han, and H. You, "Performance analysis of a CCHP system based on SOFC/GT/$CO_2$ cycle and ORC with LNG cold energy utilization", Int. J. Hydrogen Energy, Vol. 44, No. 56, 2019, pp. 29700-29700, doi: https://doi.org/10.1016/j.ijhydene.2019.02.201.
  12. H. Habibi, M. Zoghi, A. Chitsaz, K. Javaherd, and M. Ayazpour, "Thermo-economic analysis and optimization of combined PERC - ORC - LNG power system for diesel engine waste heat recovery", Energy Convrs. Mgmt., Vol. 173, 2018, pp. 613-625, doi: https://doi.org/10.1016/j.enconman.2018.08.005.
  13. T. W. Lim and Y. S. Choi, "Thermal design and performance evaluation of a shell-and-tube heat exchanger using LNG cold energy in LNG fuelled ship", Appl. Therm. Eng., Vol. 171, 2020, pp. 115120, doi: https://doi.org/10.1016/j.applthermaleng.2020.115120.
  14. I. H. Choi, S. I. Lee, Y. T. Seo, D. J. Chang, "Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery", Energy, Vol. 61, 2013, pp. 179-195, doi: https://doi.org/10.1016/j.energy.2013.08.047.
  15. W. J. Rao, L. J. Zhao, C. Liu, and M. G. Zhang, "A combined cycle utilizing LNG and low-temperature solar energy", Appl. Therm. Eng., Vol. 60, No. 1-2, 2013, pp. 51-60, doi: https://doi.org/10.1016/j.applthermaleng.2013.06.043.
  16. Y. Lee, J. Kim, U. Ahmed, C. Kim, and Y. W. Lee, "Multiobjective optimization of organic Rankine cycle (ORC) design considering exergy efficiency and inherent safety for LNG cold energy utilization", J. Loss Prevention in the Process Industries, Vol. 58, 2019, pp. 90-101, doi: https://doi.org/10.1016/j.jlp.2019.01.006.
  17. H. Y. Lee and K. H. Kim, "Energy and exergy analyses of a combined power cycle using the organic rankine cycle and the cold energy of liquefied natural gas", Entropy, Vol. 17, No. 9, 2015, pp. 6412-6432, doi: https://doi.org/10.3390/e17096412.
  18. K. H. Kim and K. C. Kim, "Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy", Appl. Therm. Eng., Vol. 70, No. 1, 2014, pp. 50-60, doi: https://doi.org/10.1016/j.applt hermaleng.2014.04.064.
  19. K. H. Kim, Y. G. Jung, and C. H. Han, "Performance characteristics analysis of combined cycle using regenerative organic rankine cycle and LNG cold energy", Trans. Korean Hydrogen New Energy Society, Vol. 31, No. 2, 2020, pp. 234-241, doi: https://doi.org/10.7316/KHNES.2020.31.2.234.
  20. F. Xu and D. Y. Goswami, "Thermodynamic properties of ammonia-water mixtures for power-cycle applications", Energy, Vol. 24, No. 6, 1999, pp. 525-536, doi: https://doi.org/10.1016/S0360-5442(99)00007-9.
  21. T. Yang, G. J. Chen, and T. M. Guo, "Extension of the Wong-Sandler mixing rule to the three-parameter Patel-Teja equation of state: application up to the near-critical region", Chem. Eng. J., Vol. 67, No. 1, 1997, pp. 27-36, doi: https://doi.org/10.1016/S1385-8947(97)00012-0.
  22. J. Gao, L. D. Li, Z. Y. Zhu, and S. G. Ru, "Vapor-liquid equilibria calculation for asymmetric systems using Patel-Teja equation of state with a new mixing rule", Fluid Phase Equilibria, Vol. 224, No. 2, 2004, pp. 213-219, doi: https://doi.org/10.1016/j.fluid.2004.05.007.