• Title/Summary/Keyword: DLN 연소기

Search Result 13, Processing Time 0.028 seconds

GE 7FA+e DLN-2.6 Gas Turbine Combustor : Part Ⅰ Operating Condition Optimization (GE 7FA+e DLN-2.6 가스터빈 연소기 연구 : Part Ⅰ 운전조건 최적화)

  • Oh, Jeong-Seog;Kim, Min-Ki;Heo, Pil-Won;Lee, Jang-Soo;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.43-50
    • /
    • 2008
  • DLN-2.6 combustion tuning was carried out for the maintenance of GE 7FA+e gas turbine at Seo-Incheon combined cycle power plant. DLN-2.6 combustion system has the higher level of yellow plume and combustion vibration problem in the initial operating mode than that of the base mode($100{\sim}160MW$). The objectives of this study are to investigate the causes of yellow plume and combustion vibration problems at the starting mode and to suggest the best operating condition for the reliable working of the real combustors. By the analysis of tuning data, we could conclude that a yellow plume is caused by the rich mixture(${\phi}{\sim}1$) in a PM 1 nozzle at mode 3($20{\sim}30MW$). In addition, the combustion vibration($120{\sim}140Hz$) might be related to the cold flow characteristics of PM 3 nozzles at mode 6B($40{\sim}45MW$).

GE 7FA+e DLN-2.6 Gas Turbine Combustor : Part II Design of Lab Scale Dump Combustor (GE 7FA+e DLN-2.6 가스터빈 연소기 연구 : Part II 모형 덤프 연소기 설계)

  • Oh, Jeong-Seog;Kim, Min-Ki;Heo, Pil-Won;Lee, Jang-Soo;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.51-59
    • /
    • 2008
  • DLN-2.6 combustion tuning was carried out for the maintenance of GE 7FA+e gas turbine at Seo-Incheon combined cycle power plant. DLN-2.6 combustion system has the higher level of yellow plume and combustion vibration problem in the initial operating mode than that of the base mode($100{\sim}160MW$). The objectives of this study are to investigate the causes of yellow plume and combustion vibration problems at the starting mode and to suggest the best operating condition for the reliable working of the real combustors. By the analysis of tuning data, we could conclude that a yellow plume is caused by the rich mixture(${\phi}{\sim}1$) in a PM 1 nozzle at mode 3($20{\sim}30MW$). In addition, the combustion vibration($120{\sim}140Hz$) might be related to the cold flow characteristics of PM 3 nozzles at mode 6B($40{\sim}45MW$).

An Experimental Investigation of Combustion Characteristics in a Model Combustor by Reproduction of GE 7FA+e DLN-2.6 Gas Turbine (GE 7FA+e DLN-2.6 연소기를 모사한 모형 가스터빈 연소기의 연소불안정 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Lee, Jang-Su;Park, Seong-Soon;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.231-235
    • /
    • 2009
  • The mainly objectives of this study was a combustion dynamics and instability characteristics in a model dump type combustor which is scale down of GE 7FA+e DLN 2.6 gas turbine combustor with running at Seo-Inchon combined cycle power plant. Model gas turbine injector has 2-stage swirl vane and it's reduced 1/3 size of the original one. The shape of plenum and combustor were designed for similar acoustic characteristics. As the result, this research have been shows the peak frequency of model combustor was changed quarter-wave mode to Helmholtz resonator mode in plenum and longitudinal mode in dump combustor at unstable flame conditions caused by the different of combustor temperature and fuel-air mixture distributions.

  • PDF

An Experimental Study of Combustion Characteristics in a Model Gas Turbine Combustor (모형 가스터빈 연소기의 기초 연소특성에 대한 실험적 연구)

  • Lee, Jang-Su;Kim, Min-Ki;Park, Sung-Soon;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.263-266
    • /
    • 2009
  • The mainly objectives of this study was a combustion dynamics and instability characteristics in a model gas turbine dump combustor which is the scale down of GE 7FA+e DLN 2.6 gas turbine combustor. Model gas turbine injector has 2-stage swirl vane and it’s reduced 1/3 size of the original one. The shape of plenum and combustor were designed for similar acoustic characteristics. Inlet air was preheated to $200{\sim}400^{\circ}C$. The flow velocity at mixing nozzle was 30 to 75 m/s and equivalent ratio was 0.4 to 1.2. The combustor length was varied for different acoustic characteristics to $375{\sim}700\;mm$. As the result, this research have been show the combustion instability was observed at lower equivalence ratios ($\Phi$ < $0.5{\sim}0.6$) and higher equivalent ratios ($\Phi$ > $1.1{\sim}1.2$).

  • PDF

CFD Simulation of Non-reacting and Reacting Flows for a Gas Turbine Combustor Firing Biogas (바이오 가스터빈 연소기의 비반응장과 반응장의 3차원 유동해석)

  • An, Yun-Ho;Nam, Sam-Sik;Choe, Jin-Hoon;Im, Ji-Hyuk;Kim, Ho-Keun;Chun, Jae-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.439-444
    • /
    • 2011
  • Doosan Heavy Industries & Construction Co., Ltd. has been recently developing the gas turbine engine using the biogas as fuel. This paper describes the non-reacting and reacting flow analysis of the combustor which is one of the main components in gas turbine engine. Through CFD analysis, investigation has been performed to evaluate the primary factors for aerodynamic design and to predict combustor behaviors during operation with various fuel distribution ratios. The calculation results are compared with rig test data, which reveals that CFD predictions such as pressure loss, air distribution ratio, and recirculation flow are quite reliable. The trend of NO formation was similar with the test, except the low fuel distribution ratio.

  • PDF

Numerical Analysis of Combustion Characteristics during Combustion Mode Change of a Low NOx Utility Gas Turbine (발전용 저 NOx 가스터빈의 연소모드 변환시기의 연소특성 전산해석)

  • Jeong, Jai-Mo;Chung, Jae-Hwa;Park, Jung-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.127-134
    • /
    • 2004
  • Three-dimensional numerical investigations are carried out to understand the combustion characteristics inside a DLN(dry low NOx) utility gas turbine combustor during the combustion mode change period by applying transient fuel flow rates in fuel supply system as numerical boundary conditions. The numerical solution domain comprises the complex combustor liner including cooling air holes, three types of fuel nozzles, a swirl vane, and a venturi. Detailed three-dimensional flow and temperature fields before and after combustion mode changeover have been analyzed. The results may be useful for further studies on the unfavorable phenomena, such as flashback or thermal damage of combustor parts when the combustion mode changes.

Hydrogen Enriched Gas Turbine: Core Technologies and R&D Trend (수소혼소용 가스터빈의 요소기술 및 국내외 기술개발 동향)

  • JOO, YONGJIN;KIM, MIYEONG;PARK, JUNGKEUK;PARK, SEIK;SHIN, JUGON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.351-362
    • /
    • 2020
  • Recently, renewable power is rapidly increasing globally due to extensive effort to mitigate climate change and conventional power generation industry faces new challenges. The gas turbine technology has potentials to expand its role in future power generation based on the intrinsic characteristics such as fuel diversity and fast load following ability. Hydrogen is one of the most promising fuel in terms of reducing emissions and storing variable renewable energy and replacing hydrocarbon fuel with hydrogen has become very popular. Therefore, this paper presents the core technologies to combust hydrogen added fuel efficiently in gas turbines and the analysis of domestic and international R&D trends.

Quantitative Acetone PLIF Measurement of Fuel Distribution in a Gas Turbine Combustor Burner (아세톤 PLIF를 이용한 가스터빈 연소기 버너 출구 연료분포의 정량적 측정)

  • Jeon, Woo-Jin;Kim, Hyung-Mo;Lee, Kang-Yeop;Yang, Su-Seok
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.43-52
    • /
    • 2010
  • A non-intrusive measurement, Planar Laser Induced Fluorescence was employed to visualize and measure the fuel distribution of the non-reacting field at the burner exit of gas turbine combustor. Measurement techniques, image processing method and quantification procedure were presented. Also, concentration measurement with gas analyzer was carried out to verify the propriety of PLIF result. The PLIF result coincides well with gas analyzer measurement result. PLIF test result for several other conditions are mentioned as well.

Performance Test of 5MW Gas Turbine Engine Combustor (5MW 발전용 가스터빈 엔진 연소기 성능시험)

  • Park, Poo-Min;Kim, Hyung-Mo;Choi, Young-Ho;Yang, Soo-Seok;Chon, Mu-Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.37-46
    • /
    • 2008
  • Performance test of 5MW class gasturbine combustor was carried out at combustor test facility of KARI(Korea Aerospace Research Institute). The combustor is dry low NOx type premixed combustor and fuel is natural gas. The characteristics of combustor were measured including emission, pressure pulsation and exit temperature distribution. Optimum operation point of combustor was found by changing parameters like fuel ratio between pilot and main burner. The test result showed that the combustor performance is sufficient to satisfy the gasturbine system requirement.

  • PDF

Stabilization of Abnormal Combustion of Dry Low NOx Gas Turbine Combustor for Power Generation (발전용 저 NOx 가스터빈의 연소 불안정 안정화에 관한 연구)

  • 정재모;안달홍;박정규
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.144-151
    • /
    • 2004
  • Stabilization and reduction of combustion noise and NOx emission from dry low NOx combustor of GE MS7001F gas turbine were achieved. Dry low NOx gas turbines that adopt the lean premixed combustion technology frequently generate the flame instability and high NOx emissions if not adequately tuned. Dynamic pressure oscillation during the combustion mode transfer increased as ambient temperature decreased with frequency of 80㎐ and magnitude of 4-9 psi. Effects of both combustor tuning for uniform fuel flow with burner nozzles and fuel pre-filling into transfer fuel valves on stabilisation of the dry low NOx combustor were very significant. Dynamic pressure oscillation during the combustion mode change was decreased up to 2.5 psi. Also, NOx emission from GE7F DLN-1 combustor can be maintained as low as 35-43ppm (15% O$_2$) in base load operation of 150 MW.