DOI QR코드

DOI QR Code

Preparation of W-V functionally gradient material by spark plasma sintering

  • Tang, Yi (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Qiu, Wenbin (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Chen, Longqing (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Yang, Xiaoliang (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Song, Yangyipeng (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Tang, Jun (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
  • Received : 2019.09.26
  • Accepted : 2020.01.09
  • Published : 2020.08.25

Abstract

Functionally gradient material (FGM) is promisingly effective in mitigating the thermal stress between plasma facing materials (PFM) and structural materials. However, the corresponding research with respect to W/V FGM has not been reported yet. In this work, we firstly report the successful fabrication of W/V FGM by a combined technology of mechanical alloying (MA) and spark plasma sintering (SPS). The microhardness and microstructure of the consolidated sample were both investigated. W/V stacks show significantly enhanced microhardness (>100%) compared with pure W plate, which is beneficial to the integral strength of the hybrid structure. Furthermore, we clarify that the different ductility of W and V should be carefully considered, otherwise W/V powder might aggregate and lead to the formation of compositional segregation, and simultaneously unmask the impact of V proportion on the distribution of second phase in W-V binary alloy system. This work provides an innovative approach for obtaining W-V connections with much better performance.

Keywords

References

  1. H. Bolt, V. Barabash, G. Federici, J. Linke, A. Loarte, J. Roth, K. Sato, Plasma facing and high heat flux materialseneeds for ITER and beyond, J. Nucl. Mater. 307 (2002) 43-52. https://doi.org/10.1016/S0022-3115(02)01175-3
  2. G. Kalinin, V. Barabash, A. Cardella, J. Dietz, K. Ioki, R. Matera, R. Santoro, R. Tivey, Assessment and selection of materials for ITER in-vessel components, J. Nucl. Mater. 283 (2000) 10-19.
  3. C. Linsmeier, M. Rieth, J. Aktaa, T. Chikada, A. Hoffmann, J. Hoffmann, A. Houben, H. Kurishita, X. Jin, M. Li, A. Litnovsky, S. Matsuo, A. von Müller, V. Nikolic, T. Palacios, R. Pippan, D. Qu, J. Reiser, J. Riesch, T. Shikama, R. Stieglitz, T. Weber, S. Wurster, J.H. You, Z. Zhou, Development of advanced high heat flux and plasma-facing materials, Nucl. Fusion 57 (2017), 092007. https://doi.org/10.1088/0029-5515/57/9/092007
  4. H. Takatsu, ITER project and fusion technology, Nucl. Fusion 51 (2011), 094002. https://doi.org/10.1088/0029-5515/51/9/094002
  5. J. Ongena, R. Koch, R. Wolf, H. Zohm, Magnetic-confinement fusion, Nat. Phys. (2016) 398-410.
  6. S. Preston, I. Bretherton, C. Forty, The thermophysical and mechanical properties of the copper heat sink material intended for use in ITER, Fusion Eng. Des. 66 (2003) 441-446. https://doi.org/10.1016/S0920-3796(03)00190-X
  7. G. Pintsuk, S.E. Brunings, J.E. Doring, J. Linke, I. Smid, L. Xue, Development of W/Cudfunctionally graded materials, Fusion Eng. Des. 66-68 (2003) 237-240. https://doi.org/10.1016/S0920-3796(03)00220-5
  8. Z.-J. Zhou, J. Du, S.-X. Song, Z.-H. Zhong, C.-C. Ge, Microstructural characterization of W/Cu functionally graded materials produced by a one-step resistance sintering method, J. Alloy. Comp. 428 (2007) 146-150. https://doi.org/10.1016/j.jallcom.2006.03.073
  9. M.M. Gasik, Micromechanical modelling of functionally graded materials, Comput. Mater. Sci. 13 (1998) 42-55. https://doi.org/10.1016/S0927-0256(98)00044-5
  10. F. Erdogan, Fracture mechanics of functionally graded materials, Compos. Eng. 5 (1995) 753-770. https://doi.org/10.1016/0961-9526(95)00029-M
  11. Z.J. Zhou, Y.J. Yum, C.C. Ge, The recent progress of FGM on nuclear materialsdesign and fabrication of W/Cu functionally graded material high heat flux components for fusion reactor, in: Materials Science Forum, Trans Tech Publ, 2010, pp. 353-358.
  12. A. Yusefi, N. Parvin, H. Mohammadi, WCu functionally graded material: low temperature fabrication and mechanical characterization, J. Phys. Chem. Solids 115 (2018) 26-35. https://doi.org/10.1016/j.jpcs.2017.11.029
  13. R. Jedamzik, A. Neubrand, J. Rodel, Functionally graded materials by electrochemical processing and infiltration: application to tungsten/copper composites, J. Mater. Sci. 35 (2000) 477-486. https://doi.org/10.1023/A:1004735904984
  14. C.-C. Ge, J.-T. Li, Z.-J. Zhou, W.-B. Cao, W.-P. Shen, M.-X. Wang, N.-M. Zhang, X. Liu, Z.-Y. Xu, Development of functionally graded plasma-facing materials, J. Nucl. Mater. 283 (2000) 1116-1120. https://doi.org/10.1016/S0022-3115(00)00318-4
  15. M. Koizumi, FGM activities in Japan, Compos. B Eng. 28 (1997) 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
  16. J. Song, Y. Yu, Z. Zhuang, Y. Lian, X. Liu, Y. Qi, Preparation of W-Cu functionally graded material coated with CVD-W for plasma-facing components, J. Nucl. Mater. 442 (2013) S208-S213. https://doi.org/10.1016/j.jnucmat.2013.01.326
  17. R. Liu, T. Hao, K. Wang, T. Zhang, X.P. Wang, C.S. Liu, Q.F. Fang, Microwave sintering of W/Cu functionally graded materials, J. Nucl. Mater. 431 (2012) 196-201. https://doi.org/10.1016/j.jnucmat.2011.11.013
  18. X. Tang, H. Zhang, D. Du, D. Qu, C. Hu, R. Xie, Y. Feng, Fabrication of W-Cu functionally graded material by spark plasma sintering method, Int. J. Refract. Metals Hard Mater. 42 (2014) 193-199. https://doi.org/10.1016/j.ijrmhm.2013.09.005
  19. E. Autissier, M. Richou, L. Minier, J.L. Gardarein, F. Bernard, Elaboration and thermomechanical characterization of W/Cu functionally graded materials produced by Spark Plasma Sintering for plasma facing components, Fusion Eng. Des. 98-99 (2015) 1929-1932. https://doi.org/10.1016/j.fusengdes.2015.05.066
  20. Y. Itoh, M. Takahashi, H. Takano, Design of tungsten/copper graded composite for high heat flux components, Fusion Eng. Des. 31 (1996) 279-289. https://doi.org/10.1016/0920-3796(95)00432-7
  21. N. Baluc, Materials for fusion power reactors, Plasma Phys. Control. Fusion 48 (2006) B165-B177. https://doi.org/10.1088/0741-3335/48/12B/S16
  22. J.M. Missiaen, J.J. Raharijaona, A. Antoni, C. Pascal, M. Richou, P. Magaud, Design of a W/steel functionally graded material for plasma facing components of DEMO, J. Nucl. Mater. 416 (2011) 262-269. https://doi.org/10.1016/j.jnucmat.2011.05.054
  23. C. Tan, G. Wang, L. Ji, Y. Tong, X.-M. Duan, Investigation on 316L/W functionally graded materials fabricated by mechanical alloying and spark plasma sintering, J. Nucl. Mater. 469 (2016) 32-38. https://doi.org/10.1016/j.jnucmat.2015.11.024
  24. J.M. Chen, V.M. Chernov, R.J. Kurtz, T. Muroga, Overview of the vanadium alloy researches for fusion reactors, J. Nucl. Mater. 417 (2011) 289-294. https://doi.org/10.1016/j.jnucmat.2011.02.015
  25. T. Muroga, J.M. Chen, V.M. Chernov, R.J. Kurtz, M. Le Flem, Present status of vanadium alloys for fusion applications, J. Nucl. Mater. 455 (2014) 263-268. https://doi.org/10.1016/j.jnucmat.2014.06.025
  26. R.J. Kurtz, K. Abe, V.M. Chernov, D.T. Hoelzer, H. Matsui, T. Muroga, G.R. Odette, Recent progress on development of vanadium alloys for fusion, J. Nucl. Mater. 329-333 (2004) 47-55. https://doi.org/10.1016/j.jnucmat.2004.04.299
  27. S.A. Bartenev, A. Ciampichetti, N.G. Firsin, R.A. Forrest, B.N. Kolbasov, I.B. Kvasnitskij, P.V. Romanov, V.N. Romanovskij, M. Zucchetti, Recycling of vanadium alloys in fusion reactors, J. Nucl. Mater. 367 (2007) 892-896. https://doi.org/10.1016/j.jnucmat.2007.03.066
  28. H. Matsui, K. Fukumoto, D.L. Smith, H.M. Chung, W.v. Witzenburg, S.N. Votinov, Status of vanadium alloys for fusion reactors, J. Nucl. Mater. 233-237 (1996) 92-99. https://doi.org/10.1016/S0022-3115(96)00331-5
  29. T. Muroga, T. Nagasaka, K. Abe, V.M. Chernov, H. Matsui, D.L. Smith, Z.-Y. Xu, S.J. Zinkle, Vanadium alloys - overview and recent results, J. Nucl. Mater. 307-311 (2002) 547-554. https://doi.org/10.1016/S0022-3115(02)01253-9
  30. K. Arshad, M.-Y. Zhao, Y. Yuan, Y. Zhang, Z.-H. Zhao, B. Wang, Z.-J. Zhou, G.-H. Lu, Effects of vanadium concentration on the densification, microstructures and mechanical properties of tungsten vanadium alloys, J. Nucl. Mater. 455 (2014) 96-100. https://doi.org/10.1016/j.jnucmat.2014.04.019
  31. K. Arshad, W. Guo, J. Wang, M.-Y. Zhao, Y. Yuan, Y. Zhang, B. Wang, Z.-J. Zhou, G.-H. Lu, Influence of vanadium precursor powder size on microstructures and properties of W-V alloy, Int. J. Refract. Metals Hard Mater. 50 (2015) 59-64. https://doi.org/10.1016/j.ijrmhm.2014.12.003
  32. B. Huang, B. He, Y. Xiao, R. Ang, J. Yang, J. Liao, Y. Yang, N. Liu, D. Pan, J. Tang, Microstructure and bubble formation of Al-K-Si doped tungsten prepared by spark plasma sintering, Int. J. Refract. Metals Hard Mater. 54 (2016) 335-341. https://doi.org/10.1016/j.ijrmhm.2015.08.005
  33. Z. Zhou, Y. Ma, J. Du, J. Linke, Fabrication and characterization of ultra-fine grained tungsten by resistance sintering under ultra-high pressure, Mater. Sci. Eng. A 505 (2009) 131-135. https://doi.org/10.1016/j.msea.2008.11.012
  34. K. Arshad, M.-Y. Zhao, Y. Yuan, Y. Zhang, Z.-J. Zhou, G.-H. Lu, Thermal stability evaluation of microstructures and mechanical properties of tungsten vanadium alloys, Mod. Phys. Lett. B 28 (2014) 1450207. https://doi.org/10.1142/S0217984914502078
  35. Q. Zhang, X. Shi, H. Yang, X. Duan, Microstructure and properties of W-15Cu alloys prepared by mechanical alloying and spark plasma sintering process, J. Wuhan Univ. Technol.-Materials Sci. Ed. 23 (2008) 399-402. https://doi.org/10.1007/s11595-007-3399-9
  36. K. Arshad, M.-Y. Zhao, Y. Yuan, Y. Zhang, Z.-H. Zhao, B. Wang, Z.-J. Zhou, G.-H. Lu, Effects of consolidation conditions on microstructures and properties of tungsten-vanadium alloy, in: Applied Sciences and Technology (IBCAST), 2014 11th International Bhurban Conference on, IEEE, 2014, pp. 12-17.
  37. T. Palacios, M. Monge, J. Pastor, Tungstenevanadiumeyttria alloys for fusion power reactors (I): microstructural characterization, Int. J. Refract. Metals Hard Mater. 54 (2016) 433-438. https://doi.org/10.1016/j.ijrmhm.2015.07.032

Cited by

  1. Fe-Ni base Functionally Graded Deposition by Direct Energy Deposition Additive Manufacturing Process vol.38, pp.4, 2020, https://doi.org/10.5781/jwj.2020.38.4.4
  2. Effect of powder morphology on the microstructure and mechanical property gradients in stainless steels induced by thermal gradients in spark plasma sintering vol.6, pp.19, 2021, https://doi.org/10.1557/s43580-021-00089-y
  3. Study of selective hydrogenation of biodiesel in a DBD plasma reactor vol.23, pp.9, 2020, https://doi.org/10.1088/2058-6272/ac0812