DOI QR코드

DOI QR Code

Impact of fine particles on the rheological properties of uranium dioxide powders

  • Madian, A. (Sorbonne Universites, Universite de Technologie de Compiegne, EA 4297 TIMR, Centre de Recherche Royallieu) ;
  • Leturia, M. (Sorbonne Universites, Universite de Technologie de Compiegne, EA 4297 TIMR, Centre de Recherche Royallieu) ;
  • Ablitzer, C. (CEA, DEN, DEC, Centre de Cadarache) ;
  • Matheron, P. (CEA, DEN, DEC, Centre de Cadarache) ;
  • Bernard-Granger, G. (CEA, DEN, DMRC, Centre de Marcoule) ;
  • Saleh, K. (Sorbonne Universites, Universite de Technologie de Compiegne, EA 4297 TIMR, Centre de Recherche Royallieu)
  • Received : 2019.10.04
  • Accepted : 2020.01.13
  • Published : 2020.08.25

Abstract

This study aims at characterizing the rheological properties of uranium oxide powders for nuclear fuel pellets manufacturing. The flowability of these powders must be compatible with a reproducible filling of press molds. The particle size distribution is known to have an impact on the rheological properties and fine particles (<100 ㎛) are suspected to have a detrimental effect. In this study, the impact of the particle size distribution on the rheological properties of UO2 powders was quantified, focusing on the influence of fine particles. Two complementary approaches were used. The first approach involved characterizing the powder in a static state: density, compressibility and shear test measurements were used to understand the behavior of the powder when it is transitioned from a static to a dynamic state (i.e., incipient flow conditions). The second approach involved characterizing the behavior of the powder in a dynamic state. Two zones, corresponding to two characteristic behaviors, were demonstrated for both types of measurements. The obtained results showed the amount of fines should be kept below 10 % wt to ensure a robust mold filling operation (i.e., constant mass and production rate).

Keywords

References

  1. Commissariat a lenergie atomique et aux energies alternatives (CEA), Sodiumcooled nuclear reactors, Editions Le Moniteur, France, 2016.
  2. X. Fu, D. Huck, L. Makein, B. Armstrong, U. Willen, T. Freeman, Effect of particle shape and size on flow properties of lactose powders, Particuology 10 (2012) 203-208. https://doi.org/10.1016/j.partic.2011.11.003
  3. Q. Li, V. Rudolph, B. Weigl, A. Earl, Interparticle van der Waals force in powder flowability and compactibility, Int. J. Pharm. 280 (2004) 77-93. https://doi.org/10.1016/j.ijpharm.2004.05.001
  4. E.C. Abdullah, D. Geldart, The use of bulk density measurements as flowability indicators, Powder Technol. 102 (1999) 151-165. https://doi.org/10.1016/S0032-5910(98)00208-3
  5. D. Geldart, E. Abdullah, A. Verlinden, Characterisation of dry powders, Powder Technol. 190 (2009) 70-74. https://doi.org/10.1016/j.powtec.2008.04.089
  6. K. Traina, R. Cloots, S. Bontempi, G. Lumay, N. Vandewalle, F. Boschini, Flow abilities of powders and granular materials evidenced from dynamical tap density measurement, Powder Technol. 235 (2013) 842-852. https://doi.org/10.1016/j.powtec.2012.11.039
  7. Z. Chik, L.E. Vallejo, Characterization of the angle of repose of binary granular materials, Can. Geotech. J. 42 (2005) 683-692. https://doi.org/10.1139/t04-118
  8. D. Schulze, Powders and Bulk Solids: Behavior, Characterization, Storage and Flow, Springer, 2008.
  9. M. Leturia, M. Benali, S. Lagarde, I. Ronga, K. Saleh, Characterization of flow properties of cohesive powders: a comparative study of traditional and new testing methods, Powder Technol. 253 (2014) 406-423. https://doi.org/10.1016/j.powtec.2013.11.045
  10. M. Krantz, H. Zhang, J. Zhu, Characterization of powder flow: static and dynamic testing, Powder Technol. 194 (2009) 239-245. https://doi.org/10.1016/j.powtec.2009.05.001
  11. A. Madian, C. Ablitzer, M. Leturia, P. Matheron, K. Saleh, G. Bernard-Granger, Etude des proprietes rheologiques de poudres d'oxyde d'uranium, in: 16eme Congres de la Societe Francaise de Genie des Procedes, Nancy, 2017.
  12. A. Madian, Etude de l'influence des caracteristiques physiques des poudres UO2 sur leurs proprietes rheologiques (Ph.D thesis), Universite de Technologie de Compiegne, 2019.
  13. R.L. Carr Jr., Evaluating flow properties of solids, Chem. Eng. 72 (1965) 163-168.
  14. H.H. Hausner, Friction Conditions in a Mass of Metal Powder, Polytechnic Inst. of Brooklyn. Univ. of California, Los Angeles, 1967.
  15. A. Saker, M.-G. Cares-Pacheco, P. Marchal, V. Falk, Powders flowability assessment in granular compaction: what about the consistency of Hausner ratio? Powder Technol. 354 (2019) 52-63. https://doi.org/10.1016/j.powtec.2019.05.032
  16. R. Freeman, Measuring the flow properties of consolidated, conditioned and aerated powdersda comparative study using a powder rheometer and a rotational shear cell, Powder Technol. 174 (2007) 25-33. https://doi.org/10.1016/j.powtec.2006.10.016
  17. A.W. Jenike, Storage and Flow of Solids, Bulletin 123, Engineering Experiment Station, University of Utah, 1964.
  18. T.A. Bell, Powder handling-industrial needs in solids flow for the 21st Century, Powder Handl. Process. 11 (1999) 9-12.
  19. J. Schwedes, D. Schulze, Measurement of flow properties of bulk solids, Powder Technol. 61 (1990) 59-68. https://doi.org/10.1016/0032-5910(90)80066-8
  20. K. Saleh, P. Guigon, Mise en oeuvre des poudres - Stockage et ecoulement des silos, Techniques de l'ingenieur, 2012, p. J2255.
  21. W.-H. Wei, L.-Z. Wang, T. Chen, X.-M. Duan, W. Li, Study on the flow properties of Ti-6Al-4V powders prepared by radio-frequency plasma spheroidization, Adv. Powder Technol. 28 (2017) 2431-2437. https://doi.org/10.1016/j.apt.2017.06.025
  22. A. D7891-15, Standard Test Method for Shear Testing of Powders Using the Freeman Technology FT4 Powder Rheometer Shear Cell, ASTM International, 2015.
  23. M. Li, M. Leturia, K. Saleh, Analysis of the periodic motion in a powder rheometer and development of a new flowability testing method, KONA Powder Part. J. 35 (2018) 160-171. https://doi.org/10.14356/kona.2018002
  24. R. Freeman, X. Fu, Characterisation of powder bulk, dynamic flow and shear properties in relation to die filling, Powder Metall. 51 (2008) 196-201. https://doi.org/10.1179/174329008X324115

Cited by

  1. Evaluation of multifunctional magnesium aluminosilicate materials as novel family of glidants in solid dosage products vol.592, 2021, https://doi.org/10.1016/j.ijpharm.2020.120054
  2. Investigating grinding mechanisms and scaling criteria in a ball mill by dimensional analysis vol.32, pp.8, 2020, https://doi.org/10.1016/j.apt.2021.06.016
  3. Effect of Mixer Type on Particle Coating by Magnesium Stearate for Friction and Adhesion Modification vol.13, pp.8, 2020, https://doi.org/10.3390/pharmaceutics13081211
  4. Influence of powder state and rheology on sintering behaviour of SiC vol.8, 2021, https://doi.org/10.1016/j.oceram.2021.100192