DOI QR코드

DOI QR Code

Effects of Precipitates and Oxide Dispersion on the High-temperature Mechanical Properties of ODS Ni-Based Superalloys

  • Noh, GooWon (Liquid processing & Casting R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Young Do (Department of Materials Science and Engineering, Hanyang University) ;
  • Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University) ;
  • Kim, Hwi-Jun (Liquid processing & Casting R&D Group, Korea Institute of Industrial Technology)
  • Received : 2020.02.17
  • Accepted : 2020.02.24
  • Published : 2020.02.28

Abstract

In this study, we investigated the effects of precipitates and oxide dispersoids on the high-temperature mechanical properties of oxide dispersion-strengthened (ODS) Ni-based super alloys. Two ODS Ni-based super alloy rods with different chemical compositions were fabricated by high-energy milling and hot extrusion process at 1150 ℃ to investigate the effects of precipitates on high-temperature mechanical properties. Further, the MA6000N alloy is an improvement over the commercial MA6000 alloy, and the KS6000 alloy has the same chemical composition as the MA6000 alloy. The phase and microstructure of Ni-based super alloys were investigated by X-ray diffraction and scanning electron microscopy. It was found that MC carbide precipitates and oxide dispersoids in the ODS Ni-based super alloys developed in this study may effectively improve high-temperature hardness and creep resistance.

Keywords

References

  1. W. Betteridge and J. Heslop: Nimonic Alloys and Other Nickel-base High Temperature Alloys 2nd ed., J. Heslop (Ed.), Originating Research Org., United Kingdom, (1974).
  2. J. H. Kim and J. H. Lee: J. Korean Powder Metall. Inst., 20 (2013) 228.
  3. A. Chauhan, D. Litvinov, Y. de Carlan and J. Aktaa: Mater. Sci. Eng. A, 658 (2016) 123. https://doi.org/10.1016/j.msea.2016.01.109
  4. J. S. Benjamin: Sci. Am., 234 (1976) 40. https://doi.org/10.1038/scientificamerican0576-40
  5. J. B. Seol, D. Haley, D. T. Hoelzer and J. H. Kim: Acta Mater., 153 (2018) 71. https://doi.org/10.1016/j.actamat.2018.04.046
  6. C. Suryanarayana: Prog. Mater. Sci., 46 (2001) 1. https://doi.org/10.1016/S0079-6425(99)00010-9
  7. K. Kusnomi, K. Sumino, Y. Kawasaki and M. Yamazaki: Metall. Trans. A, 21 (1990) 547. https://doi.org/10.1007/BF02671927
  8. J. Rosler and E. Arzt: Acta Metall. Mater., 38 (1990) 671. https://doi.org/10.1016/0956-7151(90)90223-4
  9. J. Yang, Q. Zheng, H. Zhang, X. Sun, H. Guan and Z. Hu: Mater. Sci. Eng. A, 527 (2010) 1016. https://doi.org/10.1016/j.msea.2009.10.026
  10. J. Yang, Q. Zheng, X. Sun, H. Guan and Z. Hu: Mater. Sci. Eng. A, 429 (2006) 341. https://doi.org/10.1016/j.msea.2006.05.091
  11. J. Smialek and G. M. Meier, Superalloys II, C. T. Sims, N. S. Stoloff and W. C. Hagel (Ed.), John Wiley & Sons, New York (1987) 293.
  12. B. G. Choi, I. S. Kim, D. H. Kim and C. Y. Jo: Mater. Sci. Eng. A, 478 (2008) 329. https://doi.org/10.1016/j.msea.2007.06.010
  13. J. H. Choi, K. R. Lee, C. Y. Jo and I. B. Kim: J. Kor. Soc. Heat Treat., 5 (1992) 85.
  14. S. K. Kang and R. C. Benn: Metall. Trans. A, 16 (1985) 1285. https://doi.org/10.1007/BF02670333
  15. K. Mino: J. Eng. Gas Turbines Power, 113 (1991) 568. https://doi.org/10.1115/1.2906279