References
- Alimirah, F., Chen, J., Basrawala, Z., Xin, H. and Choubey, D. (2006) DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: Implications for the androgen receptor functions and regulation. FEBS Lett. 580, 2294-2300. https://doi.org/10.1016/j.febslet.2006.03.041
- Balk, S. P. (2009) Increased expression of genes converting adrenal androgens to testosterone in castration-recurrent prostate cancer. In Androgen Action in Prostate Cancer (J. Mohler and D. Tindall, Eds.), pp. 123-139. Springer, New York.
- Balk, S. P. and Knudsen, K. E. (2008) AR, the cell cycle, and prostate cancer. Nucl. Recept. Signal. 6, e001.
- Bao, L., Diao, H., Dong, N., Su, X., Wang, B., Mo, Q., Yu, H., Wang, X. and Chen, C. (2016) Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol. Toxicol. 32, 469-482. https://doi.org/10.1007/s10565-016-9347-8
- Bilusic, M., Madan, R. A. and Gulley, J. L. (2017) Immunotherapy of prostate cancer: facts and hopes. Clin. Cancer Res. 23, 6764-6770. https://doi.org/10.1158/1078-0432.CCR-17-0019
- Bishayee, K., Khuda-Bukhsh, A. R. and Huh, S. O. (2015) PLGA-loaded gold-nanoparticles precipitated with quercetin downregulate HDAC-Akt activities controlling proliferation and activate p53-ROS crosstalk to induce apoptosis in hepatocarcinoma cells. Mol. Cells 38, 518-527. https://doi.org/10.14348/molcells.2015.2339
- Butler, L. M., Agus, D. B., Scher, H. I., Higgins, B., Rose, A., Cordon-Cardo, C., Thaler, H. T., Rifkind, R. A., Marks, P. A. and Richon, V. M. (2000) Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res. 60, 5165-5170.
- Dokmanovic, M., Clarke, C. and Marks, P. A. (2007) Histone deacetylase inhibitors: overview and perspectives. Mol. Cancer Res. 5, 981-989. https://doi.org/10.1158/1541-7786.MCR-07-0324
- Dokmanovic, M. and Marks, P. A. (2005) Prospects: histone deacetylase inhibitors. J. Cell Biochem. 96, 293-304. https://doi.org/10.1002/jcb.20532
- Ducasse, M. and Brown, M. A. (2006) Epigenetic aberrations and cancer. Mol. Cancer 5, 60. https://doi.org/10.1186/1476-4598-5-60
- Eckschlager, T., Plch, J., Stiborova, M. and Hrabeta, J. (2017) Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci. 18, E1414. https://doi.org/10.3390/ijms18071414
- Feng, W., Cai, D., Zhang, B., Lou, G. and Zou, X. (2015) Combination of HDAC inhibitor TSA and silibinin induces cell cycle arrest and apoptosis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells. Biomed. Pharmacother. 74, 257-264. https://doi.org/10.1016/j.biopha.2015.08.017
- Franken, N. A., Rodermond, H. M., Stap, J., Haveman, J. and Van Bree, C. (2006) Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315-2319. https://doi.org/10.1038/nprot.2006.339
- Ganai, S. A. (2016) Histone deacetylase inhibitor pracinostat in doublet therapy: a unique strategy to improve therapeutic efficacy and to tackle herculean cancer chemoresistance. Pharm. Biol. 54, 1926-1935. https://doi.org/10.3109/13880209.2015.1135966
- Kastan, M. B. and Bartek, J. (2004) Cell-cycle checkpoints and cancer. Nature 432, 316-323. https://doi.org/10.1038/nature03097
- Keizman, D. and Eisenberger, M. (2010) Is there a role for chemotherapy in nonmetastatic prostate cancer? Curr. Opin. Support Palliat. Care 4, 141-146. https://doi.org/10.1097/SPC.0b013e32833c6cfe
- Komatsu, N., Kawamata, N., Takeuchi, S., Yin, D., Chien, W., Miller, C. W. and Koeffler, H. P. (2006) SAHA, a HDAC inhibitor, has profound anti-growth activity against non-small cell lung cancer cells. Oncol. Rep. 15, 187-191.
- Koryakina, Y., Knudsen, K. E. and Gioeli, D. (2015) Cell-cycle-dependent regulation of androgen receptor function. Endocr. Relat. Cancer 22, 249-264. https://doi.org/10.1530/ERC-14-0549
- Kuban, D. A., Hoffman, K. E., Corn, P. and Pettaway, C. (2013) Prostate cancer. In 60 Years of Survival Outcomes at the University of Texas MD Anderson Cancer Center (M. A. Rodriguez, R. S. Walters and T. W. Burke, Eds.), pp. 35-43. Springer, New York.
- Lee, J. H., Choy, M. L., Ngo, L., Venta-Perez, G. and Marks, P. A. (2011) Role of checkpoint kinase 1 (Chk1) in the mechanisms of resistance to histone deacetylase inhibitors. Proc. Natl. Acad. Sci. U.S.A. 108, 19629-19634. https://doi.org/10.1073/pnas.1117544108
- Lin, J., Wang, C. and Kelly, W. K. (2013) Targeting epigenetics for the treatment of prostate cancer: recent progress and future directions. Semin. Oncol. 40, 393-401. https://doi.org/10.1053/j.seminoncol.2013.04.010
- Litwin, M. S. and Tan, H. J. (2017) The diagnosis and treatment of prostate cancer: a review. JAMA 317, 2532-2542. https://doi.org/10.1001/jama.2017.7248
- Marks, P. A. (2010) The clinical development of histone deacetylase inhibitors as targeted anticancer drugs. Expert Opin. Investig. Drugs 19, 1049-1066. https://doi.org/10.1517/13543784.2010.510514
- Marrocco, D. L., Tilley, W. D., Bianco-Miotto, T., Evdokiou, A., Scher, H. I., Rifkind, R. A., Marks, P. A., Richon, V. M. and Butler, L. M. (2007) Suberoylanilide hydroxamic acid (vorinostat) represses androgen receptor expression and acts synergistically with an androgen receptor antagonist to inhibit prostate cancer cell proliferation. Mol. Cancer Ther. 6, 51-60. https://doi.org/10.1158/1535-7163.MCT-06-0144
- McLeod, A. B., Stice, J. P., Wardell, S. E., Alley, H. M., Chang, C. Y. and McDonnell, D. P. (2018) Validation of histone deacetylase 3 as a therapeutic target in castration-resistant prostate cancer. Prostate 78, 266-277. https://doi.org/10.1002/pros.23467
- Mottet, D. and Castronovo, V. (2008) Histone deacetylases: target enzymes for cancer therapy. Clin. Exp. Metastasis 25, 183-189. https://doi.org/10.1007/s10585-007-9131-5
- Nair, H. K., Rao, K. V., Aalinkeel, R., Mahajan, S., Chawda, R. and Schwartz, S. A. (2004) Inhibition of prostate cancer cell colony formation by the flavonoid quercetin correlates with modulation of specific regulatory genes. Clin. Diagn. Lab. Immunol. 11, 63-69. https://doi.org/10.1128/CDLI.11.1.63-69.2004
-
Niculescu, A. B., Chen, X., Smeets, M., Hengst, L., Prives, C. and Reed, S. I. (1998) Effects of
$p21^{Cip1/Waf1}$ at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol. Cell. Biol. 18, 629-643. https://doi.org/10.1128/MCB.18.1.629 - Park, J. W. and Han, J. W. (2019) Targeting epigenetics for cancer therapy. Arch. Pharm. Res. 42, 159-170. https://doi.org/10.1007/s12272-019-01126-z
- Park, J. H., Jung, Y., Kim, T. Y., Kim, S. G., Jong, H. S., Lee, J. W., Kim, D. K., Lee, J. S., Kim, N. K., Kim, T. Y. and Bang, Y. J. (2004) Class I histone deacetylase-selective novel synthetic inhibitors potently inhibit human tumor proliferation. Clin. Cancer Res. 10, 5271-5281. https://doi.org/10.1158/1078-0432.CCR-03-0709
- Perry, A. S., Watson, R. W., Lawler, M. and Hollywood, D. (2010) The epigenome as a therapeutic target in prostate cancer. Nat. Rev. Urol. 7, 668-680. https://doi.org/10.1038/nrurol.2010.185
-
Richon, V. M., Sandhoff, T. W., Rifkind, R. A. and Marks, P. A. (2000) Histone deacetylase inhibitor selectively induces
$p21^{WAF1}$ expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. U.S.A. 97, 10014-10019. https://doi.org/10.1073/pnas.180316197 - Robert, C. and Rassool, F. V. (2012) HDAC inhibitors: roles of DNA damage and repair. Adv. Cancer Res. 116, 87-129. https://doi.org/10.1016/B978-0-12-394387-3.00003-3
- Ropero, S. and Esteller, M. (2007) The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol. 1, 19-25. https://doi.org/10.1016/j.molonc.2007.01.001
- Rosato, R. R., Almenara, J. A., Maggio, S. C., Coe, S., Atadja, P., Dent, P. and Grant, S. (2008) Role of histone deacetylase inhibitor-induced reactive oxygen species and DNA damage in LAQ-824/fludarabine antileukemic interactions. Mol. Cancer Ther. 7, 3285-3297. https://doi.org/10.1158/1535-7163.MCT-08-0385
- Ruefli, A. A., Ausserlechner, M. J., Bernhard, D., Sutton, V. R., Tainton, K. M., Kofler, R., Smyth, M. J. and Johnstone, R. W. (2001) The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc. Natl. Acad. Sci. U.S.A. 98, 10833-10838. https://doi.org/10.1073/pnas.191208598
- Ruscetti, M., Dadashian, E. L., Guo, W., Quach, B., Mulholland, D. J., Park, J. W., Tran, L. M., Kobayashi, N., Bianchi-Frias, D., Xing, Y., Nelson, P. S. and Wu, H. (2016) HDAC inhibition impedes epithelial-mesenchymal plasticity and suppresses metastatic, castrationresistant prostate cancer. Oncogene 35, 3781-3795. https://doi.org/10.1038/onc.2015.444
- Sambucetti, L. C., Fischer, D. D., Zabludoff, S., Kwon, P. O., Chamberlin, H., Trogani, N., Xu, H. and Cohen, D. (1999) Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J. Biol. Chem. 274, 34940-34947. https://doi.org/10.1074/jbc.274.49.34940
- Schroder, F., Crawford, E. D., Axcrona, K., Payne, H. and Keane, T. E. (2012) Androgen deprivation therapy: past, present and future. BJU Int. 109 Suppl 6, 1-12.
- Shankar, S. and Srivastava, R. K. (2008) Histone deacetylase inhibitors: mechanisms and clinical significance in cancer: HDAC inhibitor-induced apoptosis. Adv. Exp. Med. Biol. 615, 261-298. https://doi.org/10.1007/978-1-4020-6554-5_13
- Shrotriya, S., Gagan, D., Ramasamy, K., Raina, K., Barbakadze, V., Merlani, M., Gogilashvili, L., Amiranashvili, L., Mulkijanyan, K., Papadopoulos, K., Agarwal, C. and Agarwal, R. (2012) Poly[3-(3,4-dihydroxyphenyl) glyceric acid] from Comfrey exerts anti-cancer efficacy against human prostate cancer via targeting androgen receptor, cell cycle arrest and apoptosis. Carcinogenesis 33, 1572-1580. https://doi.org/10.1093/carcin/bgs202
- Siegel, R. L., Miller, K. D. and Jemal, A. (2018) Cancer statistics, 2018. CA Cancer J. Clin. 68, 7-30. https://doi.org/10.3322/caac.21442
- Telles, E. and Seto, E. (2012) Modulation of cell cycle regulators by HDACs. Front. Biosci. (Schol. Ed.) 4, 831-839.
- Waltregny, D., North, B., Van Mellaert, F., De Leval, J., Verdin, E. and Castronovo, V. (2004) Screening of histone deacetylases (HDAC) expression in human prostate cancer reveals distinct class I HDAC profiles between epithelial and stromal cells. Eur. J. Histochem. 48, 273-290.
- Wang, H., Zhou, W., Zheng, Z., Zhang, P., Tu, B., He, Q. and Zhu, W. G. (2012) The HDAC inhibitor depsipeptide transactivates the p53/p21 pathway by inducing DNA damage. DNA Repair (Amst.) 11, 146-156. https://doi.org/10.1016/j.dnarep.2011.10.014
-
Wang, L. G., Ossowski, L. and Ferrari, A. C. (2001) Overexpressed androgen receptor linked to
$p21^{WAF1}$ silencing may be responsible for androgen independence and resistance to apoptosis of a prostate cancer cell line. Cancer Res. 61, 7544-7551. - Weichert, W., Roske, A., Gekeler, V., Beckers, T., Stephan, C., Jung, K., Fritzsche, F. R., Niesporek, S., Denkert, C., Dietel, M. and Kristiansen, G. (2008) Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br. J. Cancer 98, 604-610. https://doi.org/10.1038/sj.bjc.6604199
- Xu, Y., Chen, S. Y., Ross, K. N. and Balk, S. P. (2006) Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res. 66, 7783-7792. https://doi.org/10.1158/0008-5472.CAN-05-4472
- Yoon, S. and Eom, G. H. (2016) HDAC and HDAC inhibitor: from cancer to cardiovascular diseases. Chonnam. Med. J. 52, 1-11. https://doi.org/10.4068/cmj.2016.52.1.1
-
Zhao, Y., Lu, S., Wu, L., Chai, G., Wang, H., Chen, Y., Sun, J., Yu, Y., Zhou, W., Zheng, Q., Wu, M., Otterson, G. A. and Zhu, W. G. (2006) Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of
$p21^{Waf1/Cip1}$ . Mol. Cell. Biol. 26, 2782-2790. https://doi.org/10.1128/MCB.26.7.2782-2790.2006
Cited by
- Biological Evaluation of Oxindole Derivative as a Novel Anticancer Agent against Human Kidney Carcinoma Cells vol.10, pp.9, 2020, https://doi.org/10.3390/biom10091260
- Lysine 53 Acetylation of Cytochrome c in Prostate Cancer: Warburg Metabolism and Evasion of Apoptosis vol.10, pp.4, 2021, https://doi.org/10.3390/cells10040802
- Podophyllotoxin Induces ROS-Mediated Apoptosis and Cell Cycle Arrest in Human Colorectal Cancer Cells via p38 MAPK Signaling vol.29, pp.6, 2021, https://doi.org/10.4062/biomolther.2021.143