DOI QR코드

DOI QR Code

A New Histone Deacetylase Inhibitor, MHY4381, Induces Apoptosis via Generation of Reactive Oxygen Species in Human Prostate Cancer Cells

  • Richa, Sachan (School of Pharmacy, Sungkyunkwan University) ;
  • Dey, Prasanta (School of Pharmacy, Sungkyunkwan University) ;
  • Park, Chaeun (College of Pharmacy, Pusan National University) ;
  • Yang, Jungho (College of Pharmacy, Pusan National University) ;
  • Son, Ji Yeon (School of Pharmacy, Sungkyunkwan University) ;
  • Park, Jae Hyeon (School of Pharmacy, Sungkyunkwan University) ;
  • Lee, Su Hyun (School of Pharmacy, Sungkyunkwan University) ;
  • Ahn, Mee-Young (Major in Pharmaceutical Engineering, Division of Bioindustry, College of Medical and Life Sciences, Silla University) ;
  • Kim, In Su (School of Pharmacy, Sungkyunkwan University) ;
  • Moon, Hyung Ryong (College of Pharmacy, Pusan National University) ;
  • Kim, Hyung Sik (School of Pharmacy, Sungkyunkwan University)
  • Received : 2019.05.01
  • Accepted : 2019.07.23
  • Published : 2020.03.01

Abstract

Histone deacetylase (HDAC) inhibitors represent a novel class of anticancer agents, which can be used to inhibit cell proliferation and induce apoptosis in several types of cancer cells. In this study, we investigated the anticancer activity of MHY4381, a newly synthesized HDAC inhibitor, against human prostate cancer cell lines and compared its efficacy with that of suberoylanilide hydroxamic acid (SAHA), a well-known HDAC inhibitor. We assessed cell viability, apoptosis, cell cycle regulation, and other biological effects in the prostate cancer cells. We also evaluated a possible mechanism of MHY4381 on the apoptotic cell death pathway. The IC50 value of MHY4381 was lower in DU145 cells (IC50=0.31 µM) than in LNCaP (IC50=0.85 µM) and PC-3 cells (IC50=5.23 µM). In addition, the IC50 values of MHY4381 measured in this assay were significantly lower than those of SAHA against prostate cancer cell lines. MHY4381 increased the levels of acetylated histones H3 and H4 and reduced the expression of HDAC proteins in the prostate cancer cell lines. MHY4381 increased G2/M phase arrest in DU145 cells, and G1 arrest in LNCaP cells. It also activated reactive oxygen species (ROS) generation, which induced apoptosis in the DU145 and LNCaP cells by increasing the ratio of Bax/Bcl-2 and releasing cytochrome c into the cytoplasm. Our results indicated that MHY4381 preferentially results in antitumor effects in DU145 and LNCaP cells via mitochondria-mediated apoptosis and ROS-facilitated cell death pathway, and therefore can be used as a promising prostate cancer therapeutic.

Keywords

References

  1. Alimirah, F., Chen, J., Basrawala, Z., Xin, H. and Choubey, D. (2006) DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: Implications for the androgen receptor functions and regulation. FEBS Lett. 580, 2294-2300. https://doi.org/10.1016/j.febslet.2006.03.041
  2. Balk, S. P. (2009) Increased expression of genes converting adrenal androgens to testosterone in castration-recurrent prostate cancer. In Androgen Action in Prostate Cancer (J. Mohler and D. Tindall, Eds.), pp. 123-139. Springer, New York.
  3. Balk, S. P. and Knudsen, K. E. (2008) AR, the cell cycle, and prostate cancer. Nucl. Recept. Signal. 6, e001.
  4. Bao, L., Diao, H., Dong, N., Su, X., Wang, B., Mo, Q., Yu, H., Wang, X. and Chen, C. (2016) Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol. Toxicol. 32, 469-482. https://doi.org/10.1007/s10565-016-9347-8
  5. Bilusic, M., Madan, R. A. and Gulley, J. L. (2017) Immunotherapy of prostate cancer: facts and hopes. Clin. Cancer Res. 23, 6764-6770. https://doi.org/10.1158/1078-0432.CCR-17-0019
  6. Bishayee, K., Khuda-Bukhsh, A. R. and Huh, S. O. (2015) PLGA-loaded gold-nanoparticles precipitated with quercetin downregulate HDAC-Akt activities controlling proliferation and activate p53-ROS crosstalk to induce apoptosis in hepatocarcinoma cells. Mol. Cells 38, 518-527. https://doi.org/10.14348/molcells.2015.2339
  7. Butler, L. M., Agus, D. B., Scher, H. I., Higgins, B., Rose, A., Cordon-Cardo, C., Thaler, H. T., Rifkind, R. A., Marks, P. A. and Richon, V. M. (2000) Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res. 60, 5165-5170.
  8. Dokmanovic, M., Clarke, C. and Marks, P. A. (2007) Histone deacetylase inhibitors: overview and perspectives. Mol. Cancer Res. 5, 981-989. https://doi.org/10.1158/1541-7786.MCR-07-0324
  9. Dokmanovic, M. and Marks, P. A. (2005) Prospects: histone deacetylase inhibitors. J. Cell Biochem. 96, 293-304. https://doi.org/10.1002/jcb.20532
  10. Ducasse, M. and Brown, M. A. (2006) Epigenetic aberrations and cancer. Mol. Cancer 5, 60. https://doi.org/10.1186/1476-4598-5-60
  11. Eckschlager, T., Plch, J., Stiborova, M. and Hrabeta, J. (2017) Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci. 18, E1414. https://doi.org/10.3390/ijms18071414
  12. Feng, W., Cai, D., Zhang, B., Lou, G. and Zou, X. (2015) Combination of HDAC inhibitor TSA and silibinin induces cell cycle arrest and apoptosis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells. Biomed. Pharmacother. 74, 257-264. https://doi.org/10.1016/j.biopha.2015.08.017
  13. Franken, N. A., Rodermond, H. M., Stap, J., Haveman, J. and Van Bree, C. (2006) Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315-2319. https://doi.org/10.1038/nprot.2006.339
  14. Ganai, S. A. (2016) Histone deacetylase inhibitor pracinostat in doublet therapy: a unique strategy to improve therapeutic efficacy and to tackle herculean cancer chemoresistance. Pharm. Biol. 54, 1926-1935. https://doi.org/10.3109/13880209.2015.1135966
  15. Kastan, M. B. and Bartek, J. (2004) Cell-cycle checkpoints and cancer. Nature 432, 316-323. https://doi.org/10.1038/nature03097
  16. Keizman, D. and Eisenberger, M. (2010) Is there a role for chemotherapy in nonmetastatic prostate cancer? Curr. Opin. Support Palliat. Care 4, 141-146. https://doi.org/10.1097/SPC.0b013e32833c6cfe
  17. Komatsu, N., Kawamata, N., Takeuchi, S., Yin, D., Chien, W., Miller, C. W. and Koeffler, H. P. (2006) SAHA, a HDAC inhibitor, has profound anti-growth activity against non-small cell lung cancer cells. Oncol. Rep. 15, 187-191.
  18. Koryakina, Y., Knudsen, K. E. and Gioeli, D. (2015) Cell-cycle-dependent regulation of androgen receptor function. Endocr. Relat. Cancer 22, 249-264. https://doi.org/10.1530/ERC-14-0549
  19. Kuban, D. A., Hoffman, K. E., Corn, P. and Pettaway, C. (2013) Prostate cancer. In 60 Years of Survival Outcomes at the University of Texas MD Anderson Cancer Center (M. A. Rodriguez, R. S. Walters and T. W. Burke, Eds.), pp. 35-43. Springer, New York.
  20. Lee, J. H., Choy, M. L., Ngo, L., Venta-Perez, G. and Marks, P. A. (2011) Role of checkpoint kinase 1 (Chk1) in the mechanisms of resistance to histone deacetylase inhibitors. Proc. Natl. Acad. Sci. U.S.A. 108, 19629-19634. https://doi.org/10.1073/pnas.1117544108
  21. Lin, J., Wang, C. and Kelly, W. K. (2013) Targeting epigenetics for the treatment of prostate cancer: recent progress and future directions. Semin. Oncol. 40, 393-401. https://doi.org/10.1053/j.seminoncol.2013.04.010
  22. Litwin, M. S. and Tan, H. J. (2017) The diagnosis and treatment of prostate cancer: a review. JAMA 317, 2532-2542. https://doi.org/10.1001/jama.2017.7248
  23. Marks, P. A. (2010) The clinical development of histone deacetylase inhibitors as targeted anticancer drugs. Expert Opin. Investig. Drugs 19, 1049-1066. https://doi.org/10.1517/13543784.2010.510514
  24. Marrocco, D. L., Tilley, W. D., Bianco-Miotto, T., Evdokiou, A., Scher, H. I., Rifkind, R. A., Marks, P. A., Richon, V. M. and Butler, L. M. (2007) Suberoylanilide hydroxamic acid (vorinostat) represses androgen receptor expression and acts synergistically with an androgen receptor antagonist to inhibit prostate cancer cell proliferation. Mol. Cancer Ther. 6, 51-60. https://doi.org/10.1158/1535-7163.MCT-06-0144
  25. McLeod, A. B., Stice, J. P., Wardell, S. E., Alley, H. M., Chang, C. Y. and McDonnell, D. P. (2018) Validation of histone deacetylase 3 as a therapeutic target in castration-resistant prostate cancer. Prostate 78, 266-277. https://doi.org/10.1002/pros.23467
  26. Mottet, D. and Castronovo, V. (2008) Histone deacetylases: target enzymes for cancer therapy. Clin. Exp. Metastasis 25, 183-189. https://doi.org/10.1007/s10585-007-9131-5
  27. Nair, H. K., Rao, K. V., Aalinkeel, R., Mahajan, S., Chawda, R. and Schwartz, S. A. (2004) Inhibition of prostate cancer cell colony formation by the flavonoid quercetin correlates with modulation of specific regulatory genes. Clin. Diagn. Lab. Immunol. 11, 63-69. https://doi.org/10.1128/CDLI.11.1.63-69.2004
  28. Niculescu, A. B., Chen, X., Smeets, M., Hengst, L., Prives, C. and Reed, S. I. (1998) Effects of $p21^{Cip1/Waf1}$ at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol. Cell. Biol. 18, 629-643. https://doi.org/10.1128/MCB.18.1.629
  29. Park, J. W. and Han, J. W. (2019) Targeting epigenetics for cancer therapy. Arch. Pharm. Res. 42, 159-170. https://doi.org/10.1007/s12272-019-01126-z
  30. Park, J. H., Jung, Y., Kim, T. Y., Kim, S. G., Jong, H. S., Lee, J. W., Kim, D. K., Lee, J. S., Kim, N. K., Kim, T. Y. and Bang, Y. J. (2004) Class I histone deacetylase-selective novel synthetic inhibitors potently inhibit human tumor proliferation. Clin. Cancer Res. 10, 5271-5281. https://doi.org/10.1158/1078-0432.CCR-03-0709
  31. Perry, A. S., Watson, R. W., Lawler, M. and Hollywood, D. (2010) The epigenome as a therapeutic target in prostate cancer. Nat. Rev. Urol. 7, 668-680. https://doi.org/10.1038/nrurol.2010.185
  32. Richon, V. M., Sandhoff, T. W., Rifkind, R. A. and Marks, P. A. (2000) Histone deacetylase inhibitor selectively induces $p21^{WAF1}$ expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. U.S.A. 97, 10014-10019. https://doi.org/10.1073/pnas.180316197
  33. Robert, C. and Rassool, F. V. (2012) HDAC inhibitors: roles of DNA damage and repair. Adv. Cancer Res. 116, 87-129. https://doi.org/10.1016/B978-0-12-394387-3.00003-3
  34. Ropero, S. and Esteller, M. (2007) The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol. 1, 19-25. https://doi.org/10.1016/j.molonc.2007.01.001
  35. Rosato, R. R., Almenara, J. A., Maggio, S. C., Coe, S., Atadja, P., Dent, P. and Grant, S. (2008) Role of histone deacetylase inhibitor-induced reactive oxygen species and DNA damage in LAQ-824/fludarabine antileukemic interactions. Mol. Cancer Ther. 7, 3285-3297. https://doi.org/10.1158/1535-7163.MCT-08-0385
  36. Ruefli, A. A., Ausserlechner, M. J., Bernhard, D., Sutton, V. R., Tainton, K. M., Kofler, R., Smyth, M. J. and Johnstone, R. W. (2001) The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc. Natl. Acad. Sci. U.S.A. 98, 10833-10838. https://doi.org/10.1073/pnas.191208598
  37. Ruscetti, M., Dadashian, E. L., Guo, W., Quach, B., Mulholland, D. J., Park, J. W., Tran, L. M., Kobayashi, N., Bianchi-Frias, D., Xing, Y., Nelson, P. S. and Wu, H. (2016) HDAC inhibition impedes epithelial-mesenchymal plasticity and suppresses metastatic, castrationresistant prostate cancer. Oncogene 35, 3781-3795. https://doi.org/10.1038/onc.2015.444
  38. Sambucetti, L. C., Fischer, D. D., Zabludoff, S., Kwon, P. O., Chamberlin, H., Trogani, N., Xu, H. and Cohen, D. (1999) Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J. Biol. Chem. 274, 34940-34947. https://doi.org/10.1074/jbc.274.49.34940
  39. Schroder, F., Crawford, E. D., Axcrona, K., Payne, H. and Keane, T. E. (2012) Androgen deprivation therapy: past, present and future. BJU Int. 109 Suppl 6, 1-12.
  40. Shankar, S. and Srivastava, R. K. (2008) Histone deacetylase inhibitors: mechanisms and clinical significance in cancer: HDAC inhibitor-induced apoptosis. Adv. Exp. Med. Biol. 615, 261-298. https://doi.org/10.1007/978-1-4020-6554-5_13
  41. Shrotriya, S., Gagan, D., Ramasamy, K., Raina, K., Barbakadze, V., Merlani, M., Gogilashvili, L., Amiranashvili, L., Mulkijanyan, K., Papadopoulos, K., Agarwal, C. and Agarwal, R. (2012) Poly[3-(3,4-dihydroxyphenyl) glyceric acid] from Comfrey exerts anti-cancer efficacy against human prostate cancer via targeting androgen receptor, cell cycle arrest and apoptosis. Carcinogenesis 33, 1572-1580. https://doi.org/10.1093/carcin/bgs202
  42. Siegel, R. L., Miller, K. D. and Jemal, A. (2018) Cancer statistics, 2018. CA Cancer J. Clin. 68, 7-30. https://doi.org/10.3322/caac.21442
  43. Telles, E. and Seto, E. (2012) Modulation of cell cycle regulators by HDACs. Front. Biosci. (Schol. Ed.) 4, 831-839.
  44. Waltregny, D., North, B., Van Mellaert, F., De Leval, J., Verdin, E. and Castronovo, V. (2004) Screening of histone deacetylases (HDAC) expression in human prostate cancer reveals distinct class I HDAC profiles between epithelial and stromal cells. Eur. J. Histochem. 48, 273-290.
  45. Wang, H., Zhou, W., Zheng, Z., Zhang, P., Tu, B., He, Q. and Zhu, W. G. (2012) The HDAC inhibitor depsipeptide transactivates the p53/p21 pathway by inducing DNA damage. DNA Repair (Amst.) 11, 146-156. https://doi.org/10.1016/j.dnarep.2011.10.014
  46. Wang, L. G., Ossowski, L. and Ferrari, A. C. (2001) Overexpressed androgen receptor linked to $p21^{WAF1}$ silencing may be responsible for androgen independence and resistance to apoptosis of a prostate cancer cell line. Cancer Res. 61, 7544-7551.
  47. Weichert, W., Roske, A., Gekeler, V., Beckers, T., Stephan, C., Jung, K., Fritzsche, F. R., Niesporek, S., Denkert, C., Dietel, M. and Kristiansen, G. (2008) Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br. J. Cancer 98, 604-610. https://doi.org/10.1038/sj.bjc.6604199
  48. Xu, Y., Chen, S. Y., Ross, K. N. and Balk, S. P. (2006) Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res. 66, 7783-7792. https://doi.org/10.1158/0008-5472.CAN-05-4472
  49. Yoon, S. and Eom, G. H. (2016) HDAC and HDAC inhibitor: from cancer to cardiovascular diseases. Chonnam. Med. J. 52, 1-11. https://doi.org/10.4068/cmj.2016.52.1.1
  50. Zhao, Y., Lu, S., Wu, L., Chai, G., Wang, H., Chen, Y., Sun, J., Yu, Y., Zhou, W., Zheng, Q., Wu, M., Otterson, G. A. and Zhu, W. G. (2006) Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of $p21^{Waf1/Cip1}$. Mol. Cell. Biol. 26, 2782-2790. https://doi.org/10.1128/MCB.26.7.2782-2790.2006

Cited by

  1. Biological Evaluation of Oxindole Derivative as a Novel Anticancer Agent against Human Kidney Carcinoma Cells vol.10, pp.9, 2020, https://doi.org/10.3390/biom10091260
  2. Lysine 53 Acetylation of Cytochrome c in Prostate Cancer: Warburg Metabolism and Evasion of Apoptosis vol.10, pp.4, 2021, https://doi.org/10.3390/cells10040802
  3. Podophyllotoxin Induces ROS-Mediated Apoptosis and Cell Cycle Arrest in Human Colorectal Cancer Cells via p38 MAPK Signaling vol.29, pp.6, 2021, https://doi.org/10.4062/biomolther.2021.143