References
- Bates, K. A., Verdile, G., Li, Q. X., Ames, D., Hudson, P., Masters, C. L. and Martins, R. N. (2009) Clearance mechanisms of Alzheimer's amyloid-beta peptide: implications for therapeutic design and diagnostic tests. Mol. Psychiatry 14, 469-486. https://doi.org/10.1038/mp.2008.96
- Bredesen, D. E. (2009) Neurodegeneration in Alzheimer's disease: caspases and synaptic element interdependence. Mol. Neurodegener. 4, 27. https://doi.org/10.1186/1750-1326-4-27
- Broersen, K., Rousseau, F. and Schymkowitz, J. (2010) The culprit behind amyloid beta peptide related neurotoxicity in Alzheimer's disease: oligomer size or conformation? Alzheimers Res. Ther. 2, 12. https://doi.org/10.1186/alzrt36
- Bu, G., Cam, J. and Zerbinatti, C. (2006) LRP in amyloid-beta production and metabolism. Ann. N. Y. Acad. Sci. 1086, 35-53. https://doi.org/10.1196/annals.1377.005
- Chang, S. K., Youn, J. R. and Kang, S. S. (1993) Seasonal variations of biflavone content from Ginkgo biloba leaves. Kor. J. Pharmacogn. 24, 54-57.
- Chen, C., Li, B., Cheng, G., Yang, X., Zhao, N. and Shi, R. (2018) Amentoflavone ameliorates abeta1-42-induced memory deficits and oxidative stress in cellular and rat model. Neurochem. Res. 43, 857-868. https://doi.org/10.1007/s11064-018-2489-8
- Chen, G. F., Xu, T. H., Yan, Y., Zhou, Y. R., Jiang, Y., Melcher, K. and Xu, H. E. (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 38, 1205-1235. https://doi.org/10.1038/aps.2017.28
- Cohen, S. I., Linse, S., Luheshi, L. M., Hellstrand, E., White, D. A., Rajah, L., Otzen, D. E., Vendruscolo, M., Dobson, C. M. and Knowles, T. P. (2013) Proliferation of amyloid-beta42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl. Acad. Sci. U.S.A. 110, 9758-9763. https://doi.org/10.1073/pnas.1218402110
- Cunningham, C. (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61, 71-90. https://doi.org/10.1002/glia.22350
- Dasilva, K. A., Shaw, J. E. and McLaurin, J. (2010) Amyloid-beta fibrillogenesis: structural insight and therapeutic intervention. Exp. Neurol. 223, 311-321. https://doi.org/10.1016/j.expneurol.2009.08.032
- Deane, R., Bell, R. D., Sagare, A. and Zlokovic, B. V. (2009) Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease. CNS Neurol. Disord. Drug Targets 8, 16-30. https://doi.org/10.2174/187152709787601867
- Eisele, Y. S., Monteiro, C., Fearns, C., Encalada, S. E., Wiseman, R. L., Powers, E. T. and Kelly, J. W. (2015) Targeting protein aggregation for the treatment of degenerative diseases. Nat. Rev. Drug Discov. 14, 759-780. https://doi.org/10.1038/nrd4593
- Giorgetti, S., Greco, C., Tortora, P. and Aprile, F. A. (2018) Targeting amyloid aggregation: an overview of strategies and mechanisms. Int. J. Mol. Sci. 19, E2677. https://doi.org/10.3390/ijms19092677
- Glenner, G. G. and Wong, C. W. (1984) Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 122, 1131-1135. https://doi.org/10.1016/0006-291X(84)91209-9
- Han, B. H., Zhou, M. L., Abousaleh, F., Brendza, R. P., Dietrich, H. H., Koenigsknecht-Talboo, J., Cirrito, J. R., Milner, E., Holtzman, D. M. and Zipfel, G. J. (2008) Cerebrovascular dysfunction in amyloid precursor protein transgenic mice: contribution of soluble and insoluble amyloid-beta peptide, partial restoration via gamma-secretase inhibition. J. Neurosci. 28, 13542-13550. https://doi.org/10.1523/JNEUROSCI.4686-08.2008
- Han, B. H., Zhou, M. L., Vellimana, A. K., Milner, E., Kim, D. H., Greenberg, J. K., Chu, W., Mach, R. H. and Zipfel, G. J. (2011) Resorufin analogs preferentially bind cerebrovascular amyloid: potential use as imaging ligands for cerebral amyloid angiopathy. Mol. Neurodegener. 6, 86. https://doi.org/10.1186/1750-1326-6-86
- Han, B. H., Zhou, M. L., Johnson, A. W., Singh, I., Liao, F., Vellimana, A. K., Nelson, J. W., Milner, E., Cirrito, J. R., Basak, J., Yoo, M., Dietrich, H. H., Holtzman, D. M. and Zipfel, G. J. (2015) Contribution of reactive oxygen species to cerebral amyloid angiopathy, vasomotor dysfunction, and microhemorrhage in aged Tg2576 mice. Proc. Natl. Acad. Sci. U.S.A. 112, E881-E890. https://doi.org/10.1073/pnas.1414930112
- Herzig, M. C., Winkler, D. T., Burgermeister, P., Pfeifer, M., Kohler, E., Schmidt, S. D., Danner, S., Abramowski, D., Sturchler-Pierrat, C., Burki, K., van Duinen, S. G., Maat-Schieman, M. L., Staufenbiel, M., Mathews, P. M. and Jucker, M. (2004) Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat. Neurosci. 7, 954-960. https://doi.org/10.1038/nn1302
- Kanekiyo, T., Zhang, J., Liu, Q., Liu, C. C., Zhang, L. and Bu, G. (2011) Heparan sulphate proteoglycan and the low-density lipoprotein receptor-related protein 1 constitute major pathways for neuronal amyloid-beta uptake. J. Neurosci. 31, 1644-1651. https://doi.org/10.1523/JNEUROSCI.5491-10.2011
- Kanekiyo, T., Liu, C. C., Shinohara, M., Li, J. and Bu, G. (2012) LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-beta. J. Neurosci. 32, 16458-16465. https://doi.org/10.1523/JNEUROSCI.3987-12.2012
- Kang, S. S., Kim, J. S., Kwak, W. J. and Kim, K. H. (1990) Flavonoids from the Leaves of Ginkgo biloba. Kor. J. Pharmacogn. 21, 111-120.
- Kang, S. S., Lee, J. Y., Choi, Y. K., Song, S. S., Kim, J. S., Jeon, S. J., Han, Y. N., Son, K. H. and Han, B. H. (2005) Neuroprotective effects of naturally occurring biflavonoids. Bioorg. Med. Chem. Lett. 15, 3588-3591. https://doi.org/10.1016/j.bmcl.2005.05.078
- Kim, J., Onstead, L., Randle, S., Price, R., Smithson, L., Zwizinski, C., Dickson, D. W., Golde, T. and McGowan, E. (2007) Abeta40 inhibits amyloid deposition in vivo. J. Neurosci. 27, 627-633. https://doi.org/10.1523/JNEUROSCI.4849-06.2007
- Kurz, A. and Perneczky, R. (2011) Amyloid clearance as a treatment target against Alzheimer's disease. J. Alzheimers Dis. 24 Suppl 2, 61-73. https://doi.org/10.3233/JAD-2011-102139
- Lee, S. J., Choi, J. H., Son, K. H., Chang, H. W., Kang, S. S. and Kim, H. P. (1995) Suppression of mouse lymphocyte proliferation in vitro by naturally-occurring biflavonoids. Life Sci. 57, 551-558. https://doi.org/10.1016/0024-3205(95)00305-P
- Luchsinger, J. A., Reitz, C., Honig, L. S., Tang, M. X., Shea, S. and Mayeux, R. (2005) Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology 65, 545-551. https://doi.org/10.1212/01.wnl.0000172914.08967.dc
- Mandrekar, S., Jiang, Q., Lee, C. Y., Koenigsknecht-Talboo, J., Holtzman, D. M. and Landreth, G. E. (2009) Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J. Neurosci. 29, 4252-4262. https://doi.org/10.1523/JNEUROSCI.5572-08.2009
- Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L. and Beyreuther, K. (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. U.S.A. 82, 4245-4249. https://doi.org/10.1073/pnas.82.12.4245
- McGowan, E., Pickford, F., Kim, J., Onstead, L., Eriksen, J., Yu, C., Skipper, L., Murphy, M. P., Beard, J., Das, P., Jansen, K., Delucia, M., Lin, W. L., Dolios, G., Wang, R., Eckman, C. B., Dickson, D. W., Hutton, M., Hardy, J. and Golde, T. (2005) Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47, 191-199. https://doi.org/10.1016/j.neuron.2005.06.030
- McKoy, A. F., Chen, J., Schupbach, T. and Hecht, M. H. (2012) A novel inhibitor of amyloid beta (Abeta) peptide aggregation: from high throughput screening to efficacy in an animal model of Alzheimer disease. J. Biol. Chem. 287, 38992-39000. https://doi.org/10.1074/jbc.M112.348037
- Querfurth, H. W. and LaFerla, F. M. (2010) Alzheimer's disease. N. Engl. J. Med. 362, 329-344. https://doi.org/10.1056/NEJMra0909142
- Reitz, C., Tang, M. X., Schupf, N., Manly, J. J., Mayeux, R. and Luchsinger, J. A. (2010) A summary risk score for the prediction of Alzheimer disease in elderly persons. Arch. Neurol. 67, 835-841. https://doi.org/10.1001/archneurol.2010.136
- Reitz, C., Brayne, C. and Mayeux, R. (2011) Epidemiology of Alzheimer disease. Nat. Rev. Neurol. 7, 137-152. https://doi.org/10.1038/nrneurol.2011.2
- Rensink, A. A., de Waal, R. M., Kremer, B. and Verbeek, M. M. (2003) Pathogenesis of cerebral amyloid angiopathy. Brain Res. Brain Res. Rev. 43, 207-223. https://doi.org/10.1016/j.brainresrev.2003.08.001
- Resende, R., Ferreiro, E., Pereira, C. and Resende de Oliveira, C. (2008) Neurotoxic effect of oligomeric and fibrillar species of amyloid-beta peptide 1-42: involvement of endoplasmic reticulum calcium release in oligomer-induced cell death. Neuroscience 155, 725-737. https://doi.org/10.1016/j.neuroscience.2008.06.036
- Ryan, T. M., Friedhuber, A., Lind, M., Howlett, G. J., Masters, C. and Roberts, B. R. (2012) Small amphipathic molecules modulate secondary structure and amyloid fibril-forming kinetics of Alzheimer disease peptide Abeta(1-42). J. Biol. Chem. 287, 16947-16954. https://doi.org/10.1074/jbc.M111.321778
- Sasaki, H., Miki, K., Kinoshita, K., Koyama, K., Juliawaty, L. D., Achmad, S. A., Hakim, E. H., Kaneda, M. and Takahashi, K. (2010) beta-Secretase (BACE-1) inhibitory effect of biflavonoids. Bioorg. Med. Chem. Lett. 20, 4558-4560. https://doi.org/10.1016/j.bmcl.2010.06.021
- Sgarbossa, A. (2012) Natural biomolecules and protein aggregation: emerging strategies against amyloidogenesis. Int. J. Mol. Sci. 13, 17121-17137. https://doi.org/10.3390/ijms131217121
- Sgarbossa, A., Giacomazza, D. and di Carlo, M. (2015) Ferulic acid: a hope for Alzheimer's disease therapy from plants. Nutrients 7, 5764-5782. https://doi.org/10.3390/nu7075246
- Shin, D. H., Bae, Y. C., Kim-Han, J. S., Lee, J. H., Choi, I. Y., Son, K. H., Kang, S. S., Kim, W. K. and Han, B. H. (2006) Polyphenol amentoflavone affords neuroprotection against neonatal hypoxicischemic brain damage via multiple mechanisms. J. Neurochem. 96, 561-572. https://doi.org/10.1111/j.1471-4159.2005.03582.x
-
Sirimangkalakitti, N., Juliawaty, L. D., Hakim, E. H., Waliana, I., Saito, A., Koyama, K. and Kinoshita, K. (2019) Naturally occurring biflavonoids with amyloid
${\beta}$ aggregation inhibitory activity for development of anti-Alzheimer agents. Bioorg. Med. Chem. Lett. 29, 1994-1997. https://doi.org/10.1016/j.bmcl.2019.05.020 - Sturchler, E., Galichet, A., Weibel, M., Leclerc, E. and Heizmann, C. W. (2008) Site-specific blockade of RAGE-Vd prevents amyloid-beta oligomer neurotoxicity. J. Neurosci. 28, 5149-5158. https://doi.org/10.1523/JNEUROSCI.4878-07.2008
- Thapa, A., Woo, E. R., Chi, E. Y., Sharoar, M. G., Jin, H. G., Shin, S. Y. and Park, I. S. (2011) Biflavonoids are superior to monoflavonoids in inhibiting amyloid-beta toxicity and fibrillogenesis via accumulation of nontoxic oligomer-like structures. Biochemistry 50, 2445-2455. https://doi.org/10.1021/bi101731d
- Thapa, A. and Chi, E. Y. (2015) Biflavonoids as potential small molecule therapeutics for Alzheimer's disease. Adv. Exp. Med. Biol. 863, 55-77. https://doi.org/10.1007/978-3-319-18365-7_3
- Tycko, R. (2015) Amyloid polymorphism: structural basis and neurobiological relevance. Neuron 86, 632-645. https://doi.org/10.1016/j.neuron.2015.03.017
- Ubhi, K. and Masliah, E. (2013) Alzheimer's disease: recent advances and future perspectives. J. Alzheimers Dis. 33 Suppl 1, S185-S194. https://doi.org/10.3233/JAD-2012-129028
- Vandersteen, A., Hubin, E., Sarroukh, R., De Baets, G., Schymkowitz, J., Rousseau, F., Subramaniam, V., Raussens, V., Wenschuh, H., Wildemann, D. and Broersen, K. (2012) A comparative analysis of the aggregation behavior of amyloid-beta peptide variants. FEBS Lett. 586, 4088-4093. https://doi.org/10.1016/j.febslet.2012.10.022
- Velander, P., Wu, L., Henderson, F., Zhang, S., Bevan, D. R. and Xu, B. (2017) Natural product-based amyloid inhibitors. Biochem. Pharmacol. 139, 40-55. https://doi.org/10.1016/j.bcp.2017.04.004
- Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J. and Selkoe, D. J. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535-539. https://doi.org/10.1038/416535a
- Wang, S. H., Liu, F. F., Dong, X. Y. and Sun, Y. (2010) Thermodynamic analysis of the molecular interactions between amyloid beta-peptide 42 and (-)-epigallocatechin-3-gallate. J. Phys. Chem. B 114, 11576-11583. https://doi.org/10.1021/jp1001435
- Weiner, M. F. (2008) Perspective on race and ethnicity in Alzheimer's disease research. Alzheimers Dement. 4, 233-238. https://doi.org/10.1016/j.jalz.2007.10.016
- Xu, Z. X., Ma, G. L., Zhang, Q., Chen, C. H., He, Y. M., Xu, L. H., Zhou, G. R., Li, Z. H., Yang, H. J. and Zhou, P. (2017) Inhibitory mechanism of epigallocatechin gallate on fibrillation and aggregation of amidated human islet amyloid polypeptide. Chemphyschem 18, 1611-1619. https://doi.org/10.1002/cphc.201700057
- Zhang, Y., Rempel, D. L., Zhang, J., Sharma, A. K., Mirica, L. M. and Gross, M. L. (2013) Pulsed hydrogen-deuterium exchange mass spectrometry probes conformational changes in amyloid beta (Abeta) peptide aggregation. Proc. Natl. Acad. Sci. U.S.A. 110, 14604-14609. https://doi.org/10.1073/pnas.1309175110
Cited by
- Amentoflavone: A Bifunctional Metal Chelator that Controls the Formation of Neurotoxic Soluble Aβ42 Oligomers vol.11, pp.17, 2020, https://doi.org/10.1021/acschemneuro.0c00376
- Dietary Regulation of Gut-Brain Axis in Alzheimer’s Disease: Importance of Microbiota Metabolites vol.15, 2020, https://doi.org/10.3389/fnins.2021.736814
- Illuminating amyloid fibrils: Fluorescence-based single-molecule approaches vol.19, 2020, https://doi.org/10.1016/j.csbj.2021.08.017
- Insights Into Amentoflavone: A Natural Multifunctional Biflavonoid vol.12, 2020, https://doi.org/10.3389/fphar.2021.768708
- Effects of clovamide and its related compounds on the aggregations of amyloid polypeptides vol.75, pp.2, 2020, https://doi.org/10.1007/s11418-020-01467-w
- Biflavonoid-Induced Disruption of Hydrogen Bonds Leads to Amyloid-β Disaggregation vol.22, pp.6, 2020, https://doi.org/10.3390/ijms22062888
- Alizarin and Purpurin from Rubia tinctorum L. Suppress Insulin Fibrillation and Reduce the Amyloid-Induced Cytotoxicity vol.12, pp.12, 2020, https://doi.org/10.1021/acschemneuro.1c00177
- Vitamin B12 Inhibits Aβ Fibrillation and Disaggregates Preformed Fibrils in the Presence of Synthetic Neuronal Membranes vol.12, pp.13, 2021, https://doi.org/10.1021/acschemneuro.1c00210
- Proceedings of Chemistry, Pharmacology, Pharmacokinetics and Synthesis of Biflavonoids vol.26, pp.19, 2021, https://doi.org/10.3390/molecules26196088