DOI QR코드

DOI QR Code

Polyphenolic Biflavonoids Inhibit Amyloid-Beta Fibrillation and Disaggregate Preformed Amyloid-Beta Fibrils

  • Choi, Erika Y. (Department of Pharmacology, A.T. Still University of Health Sciences) ;
  • Kang, Sam Sik (School of Pharmacy, Seoul National University) ;
  • Lee, Sang Kook (School of Pharmacy, Seoul National University) ;
  • Han, Byung Hee (Department of Pharmacology, A.T. Still University of Health Sciences)
  • Received : 2019.07.02
  • Accepted : 2019.09.16
  • Published : 2020.03.01

Abstract

Alzheimer's disease (AD) is a devastating neurodegenerative disease and a major cause of dementia in elderly individuals worldwide. Increased deposition of insoluble amyloid β (Aβ) fibrils in the brain is thought be a key neuropathological hallmark of AD. Many recent studies show that natural products such as polyphenolic flavonoids inhibit the formation of insoluble Aβ fibrils and/or destabilize β-sheet-rich Aβ fibrils to form non-cytotoxic aggregates. In the present study, we explored the structure-activity relationship of naturally-occurring biflavonoids on Aβ amyloidogenesis utilizing an in vitro thioflavin T assay with Aβ1-42 peptide which is prone to aggregate more rapidly to fibrils than Aβ1-40 peptide. Among the biflavonoids we tested, we found amentoflavone revealed the most potent effects on inhibiting Aβ1-42 fibrillization (IC50: 0.26 µM), as well as on disassembling preformed Aβ1-42 fibrils (EC50: 0.59 µM). Our structure-activity relationship study suggests that the hydroxyl groups of biflavonoid compounds play an essential role in their molecular interaction with the dynamic process of Aβ1-42 fibrillization. Our atomic force microscopic imaging analysis demonstrates that amentoflavone directly disrupts the fibrillar structure of preformed Aβ1-42 fibrils, resulting in conversion of those fibrils to amorphous Aβ1-42 aggregates. These results indicate that amentoflavone affords the most potent anti-amyloidogenic effects on both inhibition of Aβ1-42 fibrillization and disaggregation of preformed mature Aβ1-42 fibrils.

Keywords

References

  1. Bates, K. A., Verdile, G., Li, Q. X., Ames, D., Hudson, P., Masters, C. L. and Martins, R. N. (2009) Clearance mechanisms of Alzheimer's amyloid-beta peptide: implications for therapeutic design and diagnostic tests. Mol. Psychiatry 14, 469-486. https://doi.org/10.1038/mp.2008.96
  2. Bredesen, D. E. (2009) Neurodegeneration in Alzheimer's disease: caspases and synaptic element interdependence. Mol. Neurodegener. 4, 27. https://doi.org/10.1186/1750-1326-4-27
  3. Broersen, K., Rousseau, F. and Schymkowitz, J. (2010) The culprit behind amyloid beta peptide related neurotoxicity in Alzheimer's disease: oligomer size or conformation? Alzheimers Res. Ther. 2, 12. https://doi.org/10.1186/alzrt36
  4. Bu, G., Cam, J. and Zerbinatti, C. (2006) LRP in amyloid-beta production and metabolism. Ann. N. Y. Acad. Sci. 1086, 35-53. https://doi.org/10.1196/annals.1377.005
  5. Chang, S. K., Youn, J. R. and Kang, S. S. (1993) Seasonal variations of biflavone content from Ginkgo biloba leaves. Kor. J. Pharmacogn. 24, 54-57.
  6. Chen, C., Li, B., Cheng, G., Yang, X., Zhao, N. and Shi, R. (2018) Amentoflavone ameliorates abeta1-42-induced memory deficits and oxidative stress in cellular and rat model. Neurochem. Res. 43, 857-868. https://doi.org/10.1007/s11064-018-2489-8
  7. Chen, G. F., Xu, T. H., Yan, Y., Zhou, Y. R., Jiang, Y., Melcher, K. and Xu, H. E. (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 38, 1205-1235. https://doi.org/10.1038/aps.2017.28
  8. Cohen, S. I., Linse, S., Luheshi, L. M., Hellstrand, E., White, D. A., Rajah, L., Otzen, D. E., Vendruscolo, M., Dobson, C. M. and Knowles, T. P. (2013) Proliferation of amyloid-beta42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl. Acad. Sci. U.S.A. 110, 9758-9763. https://doi.org/10.1073/pnas.1218402110
  9. Cunningham, C. (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61, 71-90. https://doi.org/10.1002/glia.22350
  10. Dasilva, K. A., Shaw, J. E. and McLaurin, J. (2010) Amyloid-beta fibrillogenesis: structural insight and therapeutic intervention. Exp. Neurol. 223, 311-321. https://doi.org/10.1016/j.expneurol.2009.08.032
  11. Deane, R., Bell, R. D., Sagare, A. and Zlokovic, B. V. (2009) Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease. CNS Neurol. Disord. Drug Targets 8, 16-30. https://doi.org/10.2174/187152709787601867
  12. Eisele, Y. S., Monteiro, C., Fearns, C., Encalada, S. E., Wiseman, R. L., Powers, E. T. and Kelly, J. W. (2015) Targeting protein aggregation for the treatment of degenerative diseases. Nat. Rev. Drug Discov. 14, 759-780. https://doi.org/10.1038/nrd4593
  13. Giorgetti, S., Greco, C., Tortora, P. and Aprile, F. A. (2018) Targeting amyloid aggregation: an overview of strategies and mechanisms. Int. J. Mol. Sci. 19, E2677. https://doi.org/10.3390/ijms19092677
  14. Glenner, G. G. and Wong, C. W. (1984) Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 122, 1131-1135. https://doi.org/10.1016/0006-291X(84)91209-9
  15. Han, B. H., Zhou, M. L., Abousaleh, F., Brendza, R. P., Dietrich, H. H., Koenigsknecht-Talboo, J., Cirrito, J. R., Milner, E., Holtzman, D. M. and Zipfel, G. J. (2008) Cerebrovascular dysfunction in amyloid precursor protein transgenic mice: contribution of soluble and insoluble amyloid-beta peptide, partial restoration via gamma-secretase inhibition. J. Neurosci. 28, 13542-13550. https://doi.org/10.1523/JNEUROSCI.4686-08.2008
  16. Han, B. H., Zhou, M. L., Vellimana, A. K., Milner, E., Kim, D. H., Greenberg, J. K., Chu, W., Mach, R. H. and Zipfel, G. J. (2011) Resorufin analogs preferentially bind cerebrovascular amyloid: potential use as imaging ligands for cerebral amyloid angiopathy. Mol. Neurodegener. 6, 86. https://doi.org/10.1186/1750-1326-6-86
  17. Han, B. H., Zhou, M. L., Johnson, A. W., Singh, I., Liao, F., Vellimana, A. K., Nelson, J. W., Milner, E., Cirrito, J. R., Basak, J., Yoo, M., Dietrich, H. H., Holtzman, D. M. and Zipfel, G. J. (2015) Contribution of reactive oxygen species to cerebral amyloid angiopathy, vasomotor dysfunction, and microhemorrhage in aged Tg2576 mice. Proc. Natl. Acad. Sci. U.S.A. 112, E881-E890. https://doi.org/10.1073/pnas.1414930112
  18. Herzig, M. C., Winkler, D. T., Burgermeister, P., Pfeifer, M., Kohler, E., Schmidt, S. D., Danner, S., Abramowski, D., Sturchler-Pierrat, C., Burki, K., van Duinen, S. G., Maat-Schieman, M. L., Staufenbiel, M., Mathews, P. M. and Jucker, M. (2004) Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat. Neurosci. 7, 954-960. https://doi.org/10.1038/nn1302
  19. Kanekiyo, T., Zhang, J., Liu, Q., Liu, C. C., Zhang, L. and Bu, G. (2011) Heparan sulphate proteoglycan and the low-density lipoprotein receptor-related protein 1 constitute major pathways for neuronal amyloid-beta uptake. J. Neurosci. 31, 1644-1651. https://doi.org/10.1523/JNEUROSCI.5491-10.2011
  20. Kanekiyo, T., Liu, C. C., Shinohara, M., Li, J. and Bu, G. (2012) LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-beta. J. Neurosci. 32, 16458-16465. https://doi.org/10.1523/JNEUROSCI.3987-12.2012
  21. Kang, S. S., Kim, J. S., Kwak, W. J. and Kim, K. H. (1990) Flavonoids from the Leaves of Ginkgo biloba. Kor. J. Pharmacogn. 21, 111-120.
  22. Kang, S. S., Lee, J. Y., Choi, Y. K., Song, S. S., Kim, J. S., Jeon, S. J., Han, Y. N., Son, K. H. and Han, B. H. (2005) Neuroprotective effects of naturally occurring biflavonoids. Bioorg. Med. Chem. Lett. 15, 3588-3591. https://doi.org/10.1016/j.bmcl.2005.05.078
  23. Kim, J., Onstead, L., Randle, S., Price, R., Smithson, L., Zwizinski, C., Dickson, D. W., Golde, T. and McGowan, E. (2007) Abeta40 inhibits amyloid deposition in vivo. J. Neurosci. 27, 627-633. https://doi.org/10.1523/JNEUROSCI.4849-06.2007
  24. Kurz, A. and Perneczky, R. (2011) Amyloid clearance as a treatment target against Alzheimer's disease. J. Alzheimers Dis. 24 Suppl 2, 61-73. https://doi.org/10.3233/JAD-2011-102139
  25. Lee, S. J., Choi, J. H., Son, K. H., Chang, H. W., Kang, S. S. and Kim, H. P. (1995) Suppression of mouse lymphocyte proliferation in vitro by naturally-occurring biflavonoids. Life Sci. 57, 551-558. https://doi.org/10.1016/0024-3205(95)00305-P
  26. Luchsinger, J. A., Reitz, C., Honig, L. S., Tang, M. X., Shea, S. and Mayeux, R. (2005) Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology 65, 545-551. https://doi.org/10.1212/01.wnl.0000172914.08967.dc
  27. Mandrekar, S., Jiang, Q., Lee, C. Y., Koenigsknecht-Talboo, J., Holtzman, D. M. and Landreth, G. E. (2009) Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J. Neurosci. 29, 4252-4262. https://doi.org/10.1523/JNEUROSCI.5572-08.2009
  28. Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L. and Beyreuther, K. (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. U.S.A. 82, 4245-4249. https://doi.org/10.1073/pnas.82.12.4245
  29. McGowan, E., Pickford, F., Kim, J., Onstead, L., Eriksen, J., Yu, C., Skipper, L., Murphy, M. P., Beard, J., Das, P., Jansen, K., Delucia, M., Lin, W. L., Dolios, G., Wang, R., Eckman, C. B., Dickson, D. W., Hutton, M., Hardy, J. and Golde, T. (2005) Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47, 191-199. https://doi.org/10.1016/j.neuron.2005.06.030
  30. McKoy, A. F., Chen, J., Schupbach, T. and Hecht, M. H. (2012) A novel inhibitor of amyloid beta (Abeta) peptide aggregation: from high throughput screening to efficacy in an animal model of Alzheimer disease. J. Biol. Chem. 287, 38992-39000. https://doi.org/10.1074/jbc.M112.348037
  31. Querfurth, H. W. and LaFerla, F. M. (2010) Alzheimer's disease. N. Engl. J. Med. 362, 329-344. https://doi.org/10.1056/NEJMra0909142
  32. Reitz, C., Tang, M. X., Schupf, N., Manly, J. J., Mayeux, R. and Luchsinger, J. A. (2010) A summary risk score for the prediction of Alzheimer disease in elderly persons. Arch. Neurol. 67, 835-841. https://doi.org/10.1001/archneurol.2010.136
  33. Reitz, C., Brayne, C. and Mayeux, R. (2011) Epidemiology of Alzheimer disease. Nat. Rev. Neurol. 7, 137-152. https://doi.org/10.1038/nrneurol.2011.2
  34. Rensink, A. A., de Waal, R. M., Kremer, B. and Verbeek, M. M. (2003) Pathogenesis of cerebral amyloid angiopathy. Brain Res. Brain Res. Rev. 43, 207-223. https://doi.org/10.1016/j.brainresrev.2003.08.001
  35. Resende, R., Ferreiro, E., Pereira, C. and Resende de Oliveira, C. (2008) Neurotoxic effect of oligomeric and fibrillar species of amyloid-beta peptide 1-42: involvement of endoplasmic reticulum calcium release in oligomer-induced cell death. Neuroscience 155, 725-737. https://doi.org/10.1016/j.neuroscience.2008.06.036
  36. Ryan, T. M., Friedhuber, A., Lind, M., Howlett, G. J., Masters, C. and Roberts, B. R. (2012) Small amphipathic molecules modulate secondary structure and amyloid fibril-forming kinetics of Alzheimer disease peptide Abeta(1-42). J. Biol. Chem. 287, 16947-16954. https://doi.org/10.1074/jbc.M111.321778
  37. Sasaki, H., Miki, K., Kinoshita, K., Koyama, K., Juliawaty, L. D., Achmad, S. A., Hakim, E. H., Kaneda, M. and Takahashi, K. (2010) beta-Secretase (BACE-1) inhibitory effect of biflavonoids. Bioorg. Med. Chem. Lett. 20, 4558-4560. https://doi.org/10.1016/j.bmcl.2010.06.021
  38. Sgarbossa, A. (2012) Natural biomolecules and protein aggregation: emerging strategies against amyloidogenesis. Int. J. Mol. Sci. 13, 17121-17137. https://doi.org/10.3390/ijms131217121
  39. Sgarbossa, A., Giacomazza, D. and di Carlo, M. (2015) Ferulic acid: a hope for Alzheimer's disease therapy from plants. Nutrients 7, 5764-5782. https://doi.org/10.3390/nu7075246
  40. Shin, D. H., Bae, Y. C., Kim-Han, J. S., Lee, J. H., Choi, I. Y., Son, K. H., Kang, S. S., Kim, W. K. and Han, B. H. (2006) Polyphenol amentoflavone affords neuroprotection against neonatal hypoxicischemic brain damage via multiple mechanisms. J. Neurochem. 96, 561-572. https://doi.org/10.1111/j.1471-4159.2005.03582.x
  41. Sirimangkalakitti, N., Juliawaty, L. D., Hakim, E. H., Waliana, I., Saito, A., Koyama, K. and Kinoshita, K. (2019) Naturally occurring biflavonoids with amyloid ${\beta}$ aggregation inhibitory activity for development of anti-Alzheimer agents. Bioorg. Med. Chem. Lett. 29, 1994-1997. https://doi.org/10.1016/j.bmcl.2019.05.020
  42. Sturchler, E., Galichet, A., Weibel, M., Leclerc, E. and Heizmann, C. W. (2008) Site-specific blockade of RAGE-Vd prevents amyloid-beta oligomer neurotoxicity. J. Neurosci. 28, 5149-5158. https://doi.org/10.1523/JNEUROSCI.4878-07.2008
  43. Thapa, A., Woo, E. R., Chi, E. Y., Sharoar, M. G., Jin, H. G., Shin, S. Y. and Park, I. S. (2011) Biflavonoids are superior to monoflavonoids in inhibiting amyloid-beta toxicity and fibrillogenesis via accumulation of nontoxic oligomer-like structures. Biochemistry 50, 2445-2455. https://doi.org/10.1021/bi101731d
  44. Thapa, A. and Chi, E. Y. (2015) Biflavonoids as potential small molecule therapeutics for Alzheimer's disease. Adv. Exp. Med. Biol. 863, 55-77. https://doi.org/10.1007/978-3-319-18365-7_3
  45. Tycko, R. (2015) Amyloid polymorphism: structural basis and neurobiological relevance. Neuron 86, 632-645. https://doi.org/10.1016/j.neuron.2015.03.017
  46. Ubhi, K. and Masliah, E. (2013) Alzheimer's disease: recent advances and future perspectives. J. Alzheimers Dis. 33 Suppl 1, S185-S194. https://doi.org/10.3233/JAD-2012-129028
  47. Vandersteen, A., Hubin, E., Sarroukh, R., De Baets, G., Schymkowitz, J., Rousseau, F., Subramaniam, V., Raussens, V., Wenschuh, H., Wildemann, D. and Broersen, K. (2012) A comparative analysis of the aggregation behavior of amyloid-beta peptide variants. FEBS Lett. 586, 4088-4093. https://doi.org/10.1016/j.febslet.2012.10.022
  48. Velander, P., Wu, L., Henderson, F., Zhang, S., Bevan, D. R. and Xu, B. (2017) Natural product-based amyloid inhibitors. Biochem. Pharmacol. 139, 40-55. https://doi.org/10.1016/j.bcp.2017.04.004
  49. Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J. and Selkoe, D. J. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535-539. https://doi.org/10.1038/416535a
  50. Wang, S. H., Liu, F. F., Dong, X. Y. and Sun, Y. (2010) Thermodynamic analysis of the molecular interactions between amyloid beta-peptide 42 and (-)-epigallocatechin-3-gallate. J. Phys. Chem. B 114, 11576-11583. https://doi.org/10.1021/jp1001435
  51. Weiner, M. F. (2008) Perspective on race and ethnicity in Alzheimer's disease research. Alzheimers Dement. 4, 233-238. https://doi.org/10.1016/j.jalz.2007.10.016
  52. Xu, Z. X., Ma, G. L., Zhang, Q., Chen, C. H., He, Y. M., Xu, L. H., Zhou, G. R., Li, Z. H., Yang, H. J. and Zhou, P. (2017) Inhibitory mechanism of epigallocatechin gallate on fibrillation and aggregation of amidated human islet amyloid polypeptide. Chemphyschem 18, 1611-1619. https://doi.org/10.1002/cphc.201700057
  53. Zhang, Y., Rempel, D. L., Zhang, J., Sharma, A. K., Mirica, L. M. and Gross, M. L. (2013) Pulsed hydrogen-deuterium exchange mass spectrometry probes conformational changes in amyloid beta (Abeta) peptide aggregation. Proc. Natl. Acad. Sci. U.S.A. 110, 14604-14609. https://doi.org/10.1073/pnas.1309175110

Cited by

  1. Amentoflavone: A Bifunctional Metal Chelator that Controls the Formation of Neurotoxic Soluble Aβ42 Oligomers vol.11, pp.17, 2020, https://doi.org/10.1021/acschemneuro.0c00376
  2. Dietary Regulation of Gut-Brain Axis in Alzheimer’s Disease: Importance of Microbiota Metabolites vol.15, 2020, https://doi.org/10.3389/fnins.2021.736814
  3. Illuminating amyloid fibrils: Fluorescence-based single-molecule approaches vol.19, 2020, https://doi.org/10.1016/j.csbj.2021.08.017
  4. Insights Into Amentoflavone: A Natural Multifunctional Biflavonoid vol.12, 2020, https://doi.org/10.3389/fphar.2021.768708
  5. Effects of clovamide and its related compounds on the aggregations of amyloid polypeptides vol.75, pp.2, 2020, https://doi.org/10.1007/s11418-020-01467-w
  6. Biflavonoid-Induced Disruption of Hydrogen Bonds Leads to Amyloid-β Disaggregation vol.22, pp.6, 2020, https://doi.org/10.3390/ijms22062888
  7. Alizarin and Purpurin from Rubia tinctorum L. Suppress Insulin Fibrillation and Reduce the Amyloid-Induced Cytotoxicity vol.12, pp.12, 2020, https://doi.org/10.1021/acschemneuro.1c00177
  8. Vitamin B12 Inhibits Aβ Fibrillation and Disaggregates Preformed Fibrils in the Presence of Synthetic Neuronal Membranes vol.12, pp.13, 2021, https://doi.org/10.1021/acschemneuro.1c00210
  9. Proceedings of Chemistry, Pharmacology, Pharmacokinetics and Synthesis of Biflavonoids vol.26, pp.19, 2021, https://doi.org/10.3390/molecules26196088