DOI QR코드

DOI QR Code

Catalpol and Mannitol, Two Components of Rehmannia glutinosa, Exhibit Anticonvulsant Effects Probably via GABAA Receptor Regulation

  • Kim, Mikyung (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Acharya, Srijan (Department of Pharmacology, College of Pharmacy, Chonnam National University) ;
  • Botanas, Chrislean Jun (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Custodio, Raly James (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Lee, Hyun Jun (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Sayson, Leandro Val (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Abiero, Arvie (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Lee, Yong Soo (Department of Pharmacology, College of Pharmacy, Duksung Women's University) ;
  • Cheong, Jae Hoon (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Kim, Kyeong-man (Department of Pharmacology, College of Pharmacy, Chonnam National University) ;
  • Kim, Hee Jin (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University)
  • Received : 2019.08.06
  • Accepted : 2019.10.02
  • Published : 2020.03.01

Abstract

Epilepsy is a brain disorder that affects millions of people worldwide and is usually managed using currently available antiepileptic drugs, which result in adverse effects and are ineffective in approximately 20-25% of patients. Thus, there is growing interest in the development of new antiepileptic drugs with fewer side effects. In a previous study, we showed that a Rehmannia glutinosa (RG) water extract has protective effects against electroshock- and pentylenetetrazol (PTZ)-induced seizures, with fewer side effects. In this study, the objective was to identify the RG components that are responsible for its anticonvulsant effects. Initially, a number of RG components (aucubin, acteoside, catalpol, and mannitol) were screened, and the anticonvulsant effects of different doses of catalpol, mannitol, and their combination on electroshock- and chemically (PTZ or strychnine)-induced seizures in mice, were further assessed. Gamma-aminobutyric acid (GABA) receptor binding assay and electroencephalography (EEG) analysis were conducted to identify the potential underlying drug mechanism. Additionally, treated mice were tested using open-field and rotarod tests. Catalpol, mannitol, and their combination increased threshold against electroshock-induced seizures, and decreased the percentage of seizure responses induced by PTZ, a GABA antagonist. GABA receptor binding assay results revealed that catalpol and mannitol are associated with GABA receptor activity, and EEG analysis provided evidence that catalpol and mannitol have anticonvulsant effects against PTZ-induced seizures. In summary, our results indicate that catalpol and mannitol have anticonvulsant properties, and may mediate the protective effects of RG against seizures.

Keywords

References

  1. Baek, G. H., Jang, Y. S., Jeong, S. I., Cha, J., Joo, M., Shin, S. W., Ha, K. T. and Jeong, H. S. (2012) Rehmannia glutinosa suppresses inflammatory responses elicited by advanced glycation end products. Inflammation 35, 1232-1241. https://doi.org/10.1007/s10753-012-9433-x
  2. Begley, C. E., Famulari, M., Annegers, J. F., Lairson, D. R., Reynolds, T. F., Coan, S., Dubinsky, S., Newmark, M. E., Leibson, C., So, E. L. and Rocca, W. A. (2000) The cost of epilepsy in the United States: an estimate from population-based clinical and survey data. Epilepsia 41, 342-351. https://doi.org/10.1111/j.1528-1157.2000.tb00166.x
  3. Berezhnoy, D., Nyfeler, Y., Gonthier, A., Schwob, H., Goeldner, M. and Sigel, E. (2004) On the benzodiazepine binding pocket in GABAA receptors. J. Biol. Chem. 279, 3160-3168. https://doi.org/10.1074/jbc.M311371200
  4. Cheng, Y. C. and Prusoff, W. H. (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099-3108. https://doi.org/10.1016/0006-2952(73)90196-2
  5. Chou, T. C. and Talalay, P. (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Enzym. Regul. 22, 27-55. https://doi.org/10.1016/0065-2571(84)90007-4
  6. Deyn, P. P. D., Marescau, B. and MacDonald, R. (1989) Epilepsy and the GABA-hypothesis a brief review and some examples. Acta Neurol. Belg. 90, 65-81.
  7. Fisher, R. S., van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P. and Engel, J., Jr. (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46, 470-472. https://doi.org/10.1111/j.0013-9580.2005.66104.x
  8. Fisher, R. S., Vickrey, B. G., Gibson, P., Hermann, B., Penovich, P., Scherer, A. and Walker, S. (2000) The impact of epilepsy from the patient's perspective II: views about therapy and health care. Epilepsy Res. 41, 53-62. https://doi.org/10.1016/S0920-1211(00)00128-5
  9. Gao, J., An, L., Xu, Y. and Huang, Y. (2018) Catalpol exerts an antiepilepticus effect, possibly by regulating the Nrf2-Keap1-ARE signaling pathway. Med. Sci. Monit. 24, 9436-9441. https://doi.org/10.12659/MSM.911902
  10. Grauncke, A. C., Souza, T. L., Ribeiro, L. R., Brant, F., Machado, F. S. and Oliveira, M. S. (2016) Increased susceptibility to pentylenetetrazol following survival of cerebral malaria in mice. Epilepsia 57, e140-e145. https://doi.org/10.1111/epi.13425
  11. Haglund, M. M. and Hochman, D. W. (2005) Furosemide and mannitol suppression of epileptic activity in the human brain. J. Neurophysiol. 94, 907-918. https://doi.org/10.1152/jn.00944.2004
  12. Hamoy, M., dos Santos Batista, L., de Mello, V. J., Gomes-Leal, W., Farias, R. A. F., dos Santos Batista, P., do Nascimento, J. L. M., Marcondes, H. C., Taylor, J. G., Hutchison, W. D., Torres, M. F. and Barbas, L. A. L. (2018) Cunaniol-elicited seizures: behavior characterization and electroencephalographic analyses. Toxicol. Appl. Pharmacol. 360, 193-200. https://doi.org/10.1016/j.taap.2018.10.008
  13. Hansen, S. L., Sperling, B. B. and Sanchez, C. (2004) Anticonvulsant and antiepileptogenic effects of GABAA receptor ligands in pentylenetetrazole- kindled mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 28, 105-113. https://doi.org/10.1016/j.pnpbp.2003.09.026
  14. Hauser, W. A. (1992) Seizure disorders: the changes with age. Epilepsia 33, 6-14. https://doi.org/10.1111/j.1528-1157.1992.tb06222.x
  15. Heaulme, M., Chambon, J. P., Leyris, R., Wermuth, C. G. and Biziere, K. (1987) Characterization of the binding of [3H] SR 95531, a GA-BAA antagonist, to rat brain membranes. J. Neurochem. 48, 1677-1686. https://doi.org/10.1111/j.1471-4159.1987.tb05723.x
  16. Huang, R. Q., Bell-Horner, C. L., Dibas, M. I., Covey, D. F., Drewe, J. A. and Dillon, G. H. (2001) Pentylenetetrazole-induced inhibition of recombinant ${\gamma}$-aminobutyric acid type A (GABAA) receptors: mechanism and site of action. J. Pharmacol. Exp. Ther. 298, 986-995.
  17. Kim, H., An, C. S., Jung, K. Y., Choo, Y. K., Park, J. K. and Nam, S. Y. (1999) Rehmannia glutinosa inhibits tumour necrosis factor-${\alpha}$ and interleukin-1 secretion from mouse astrocytes. Pharmacol. Res. 40, 171-176. https://doi.org/10.1006/phrs.1999.0504
  18. Kim, M., Kim, H. J., Kim, S. M., De La Pena, J. B., Botanas, C. J., Woo, T., Lee, Y. S., Ryu, J. H. and Cheong, J. H. (2017) Protection against electroshock-and pentylenetetrazol-induced seizures by the water extract of rehmannia glutinous can be mediated through GABA receptor-chloride channel complexes. Nat. Prod. Sci. 23, 40-45. https://doi.org/10.20307/nps.2017.23.1.40
  19. Kim, S. S., Son, Y. O., Chun, J. C.,Kim, S. E., Chung, G. H., Hwang, K. J. and Lee, J. C. (2005) Antioxidant property of an active component purified from the leaves of paraquat-tolerant Rehmannia glutinosa. Redox Rep. 10, 311-318. https://doi.org/10.1179/135100005X83734
  20. Larson, A. A. and Beitz, A. (1988) Glycine potentiates strychnine-induced convulsions: role of NMDA receptors. J. Neurosci. 8, 3822-3826. https://doi.org/10.1523/JNEUROSCI.08-10-03822.1988
  21. Lee, S., Yean, M., Kim, J., Lee, J. and Kang, S. (2011) Phytochemical studies on rehmanniae radix preparata. Korean J. Pharmacogn. 42, 127-137.
  22. Loscher, W., Fassbender, C. P. and Nolting, B. (1991) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Res. 8, 79-94. https://doi.org/10.1016/0920-1211(91)90075-Q
  23. Luttjohann, A., Fabene, P. F. and van Luijtelaar, G. (2009) A revised Racine's scale for PTZ-induced seizures in rats. Physiol. Behav. 98, 579-586. https://doi.org/10.1016/j.physbeh.2009.09.005
  24. Lynch, J. W. (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol. Rev. 84, 1051-1095. https://doi.org/10.1152/physrev.00042.2003
  25. Pellmar, T. and Wilson, W. (1977) Synaptic mechanism of pentylenetetrazole: selectivity for chloride conductance. Science 197, 912-914. https://doi.org/10.1126/science.887932
  26. Pontes, J. C., Lima, T. Z., Queiroz, C. M., Cinini, S. M., Blanco, M. M. and Mello, L. E. (2016) Seizures triggered by pentylenetetrazol in marmosets made chronically epileptic with pilocarpine show greater refractoriness to treatment. Epilepsy Res. 126, 16-25. https://doi.org/10.1016/j.eplepsyres.2016.06.012
  27. Quintans Junior, L. J., Almeida, J. R., Lima, J. T., Nunes, X. P., Siqueira, J. S., Oliveira, L. E. G. D., Almeida, R. N., Athayde-Filho, P. F. D. and Barbosa-Filho, J. M. (2008) Plants with anticonvulsant properties: a review. Rev. Bras. Farmacogn. 18, 798-819. https://doi.org/10.1590/S0102-695X2008000500026
  28. Rogawski, M. A. and Porter, R. J. (1990) Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol. Rev. 42, 223-286.
  29. Schmidt, D. and Schachter, S. C. (2014) Drug treatment of epilepsy in adults. BMJ 348, 130-136. https://doi.org/10.1136/bmj.g130
  30. Serafini, R. (2017) A comparison of anticonvulsant efficacy and action mechanism of Mannitol vs Phenytoin in adult rat neocortical slices. IBRO Rep. 3, 55-64. https://doi.org/10.1016/j.ibror.2017.09.002
  31. Tan, K. R., Baur, R., Charon, S., Goeldner, M. and Sigel, E. (2009) Relative positioning of diazepam in the benzodiazepine-binding-pocket of GABA receptors. J. Neurochem. 111, 1264-1273. https://doi.org/10.1111/j.1471-4159.2009.06419.x
  32. Tomoda, M., Kato, S. and Mie, O. (1971) Water-soluble constituents of rehmanniae radix. I. Carbohydrates and acids of Rehmannia glutinosa f. hueichingensis. Chem. Pharm. Bull. 19, 1455-1460. https://doi.org/10.1248/cpb.19.1455
  33. Woo, T. S., Yoon, S. Y., dela Pena, I. C., Choi, J. Y., Lee, H. L., Choi, Y. J. and Cheong, J. H. (2011) Anticonvulsant effect of Artemisia capillaris Herba in mice. Biomol. Ther. (Seoul) 19, 342-347. https://doi.org/10.4062/biomolther.2011.19.3.342
  34. Yoon, S. Y., dela Pena, I. C., Shin, C. Y., Son, K. H., Lee, Y. S., Ryu, J. H., Cheong, J. H. and Ko, K. H. (2011) Convulsion-related activities of Scutellaria flavones are related to the 5, 7-dihydroxyl structures. Eur. J. Pharmacol. 659, 155-160. https://doi.org/10.1016/j.ejphar.2011.03.012
  35. Zhang, R. X., Li, M. X. and Jia, Z. P. (2008) Rehmannia glutinosa: review of botany, chemistry and pharmacology. J. Ethnopharmacol. 117, 199-214. https://doi.org/10.1016/j.jep.2008.02.018

Cited by

  1. Two newly-emerging substituted phenethylamines MAL and BOD induce differential psychopharmacological effects in rodents vol.34, pp.9, 2020, https://doi.org/10.1177/0269881120936458