DOI QR코드

DOI QR Code

Spinosin Attenuates Alzheimer's Disease-Associated Synaptic Dysfunction via Regulation of Plasmin Activity

  • Cai, Mudan (Department of Life and Nanopharmaceutical Science, Kyung Hee University) ;
  • Jung, Inho (Department of Life and Nanopharmaceutical Science, Kyung Hee University) ;
  • Kwon, Huiyoung (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University) ;
  • Cho, Eunbi (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University) ;
  • Jeon, Jieun (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University) ;
  • Yun, Jeanho (Department of Biochemistry, College of Medicine, Dong-A University) ;
  • Lee, Young Choon (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University) ;
  • Kim, Dong Hyun (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University) ;
  • Ryu, Jong Hoon (Department of Life and Nanopharmaceutical Science, Kyung Hee University)
  • Received : 2019.05.03
  • Accepted : 2019.11.07
  • Published : 2020.03.01

Abstract

Hippocampal synaptic dysfunction is a hallmark of Alzheimer's disease (AD). Many agents regulating hippocampal synaptic plasticity show an ameliorative effect on AD pathology, making them potential candidates for AD therapy. In the present study, we investigated spinosin as a regulating agent of synaptic plasticity in AD. Spinosin attenuated amyloid β (Aβ)-induced long-term potentiation (LTP) impairment, and improved plasmin activity and protein level in the hippocampi of 5XFAD mice, a transgenic AD mouse model. Moreover, the effect of spinosin on hippocampal LTP in 5XFAD mice was prevented by 6-aminocaproic acid, a plasmin inhibitor. These results suggest that spinosin improves synaptic function in the AD hippocampus by regulating plasmin activity.

Keywords

References

  1. Alkjaersig, N., Fletcher, A. P. and Sherry, S. (1959) The mechanism of clot dissolution by plasmin. J. Clin. Invest. 38, 1086-1095. https://doi.org/10.1172/JCI103885
  2. Angelucci, F., Cechova, K., Prusa, R. and Hort, J. (2019) Amyloid beta soluble forms and plasminogen activation system in Alzheimer's disease: consequences on extracellular maturation of brain-derived neurotrophic factor and therapeutic implications. CNS Neurosci. Ther. 25, 303-313. https://doi.org/10.1111/cns.13082
  3. Arancibia, S., Silhol, M., Mouliere, F., Meffre, J., Hollinger, I., Maurice, T. and Tapia-Arancibia, L. (2008) Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiol. Dis. 31, 316-326. https://doi.org/10.1016/j.nbd.2008.05.012
  4. Backman, L., Small, B. J. and Fratiglioni, L. (2001) Stability of the preclinical episodic memory deficit in Alzheimer's disease. Brain 124, 96-102. https://doi.org/10.1093/brain/124.1.96
  5. Baranello, R. J., Bharani, K. L., Padmaraju, V., Chopra, N., Lahiri, D. K., Greig, N. H., Pappolla, M. A. and Sambamurti, K. (2015) Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer's disease. Curr. Alzheimer Res. 12, 32-46. https://doi.org/10.2174/1567205012666141218140953
  6. Barker, R., Love, S. and Kehoe, P. G. (2010) Plasminogen and plasmin in Alzheimer's disease. Brain Res. 1355, 7-15. https://doi.org/10.1016/j.brainres.2010.08.025
  7. Castello, N. A., Nguyen, M. H., Tran, J. D., Cheng, D., Green, K. N. and LaFerla, F. M. (2014) 7,8-Dihydroxyflavone, a small molecule TrkB agonist, improves spatial memory and increases thin spine density in a mouse model of Alzheimer disease-like neuronal loss. PLoS ONE 9, e91453. https://doi.org/10.1371/journal.pone.0091453
  8. Criscuolo, C., Fabiani, C., Bonadonna, C., Origlia, N. and Domenici, L. (2015) BDNF prevents amyloid-dependent impairment of LTP in the entorhinal cortex by attenuating p38 MAPK phosphorylation. Neurobiol. Aging 36, 1303-1309. https://doi.org/10.1016/j.neurobiolaging.2014.11.016
  9. de Pins, B., Cifuentes-Diaz, C., Farah, A. T., Lopez-Molina, L., Montalban, E., Sancho-Balsells, A., Lopez, A., Gines, S., Delgado-Garcia, J. M., Alberch, J., Gruart, A., Girault, J. A. and Giralt, A. (2019) Conditional BDNF delivery from astrocytes rescues memory deficits, spine density, and synaptic properties in the 5xFAD mouse model of Alzheimer disease. J. Neurosci. 39, 2441-2458.
  10. Dotti, C. G., Galvan, C. and Ledesma, M. D. (2004) Plasmin deficiency in Alzheimer's disease brains: causal or casual? Neurodegener. Dis. 1, 205-212. https://doi.org/10.1159/000080987
  11. Draxler, D. F., Sashindranath, M. and Medcalf, R. L. (2017) Plasmin: a modulator of immune function. Semin. Thromb. Hemost. 43, 143-153. https://doi.org/10.1055/s-0036-1586227
  12. ElAli, A., Bordeleau, M., Theriault, P., Filali, M., Lampron, A. and Rivest, S. (2016) Tissue-plasminogen activator attenuates Alzheimer's disease-related pathology development in APPswe/PS1 mice. Neuropsychopharmacology 41, 1297-1307. https://doi.org/10.1038/npp.2015.279
  13. Gao, L., Tian, M., Zhao, H. Y., Xu, Q. Q., Huang, Y. M., Si, Q. C., Tian, Q., Wu, Q. M., Hu, X. M., Sun, L. B., McClintock, S. M. and Zeng, Y. (2016) TrkB activation by 7, 8-dihydroxyflavone increases synapse AMPA subunits and ameliorates spatial memory deficits in a mouse model of Alzheimer's disease. J. Neurochem. 136, 620-636. https://doi.org/10.1111/jnc.13432
  14. Gray, K. and Ellis, V. (2008) Activation of pro-BDNF by the pericellular serine protease plasmin. FEBS Lett. 582, 907-910. https://doi.org/10.1016/j.febslet.2008.02.026
  15. Ittner, L. M. and Gotz, J. (2011) Amyloid-beta and tau--a toxic pas de deux in Alzheimer's disease. Nat. Rev. Neurosci. 12, 65-72.
  16. Guntupalli, S., Widagdo, J. and Anggono, V. (2016) Amyloid-${\beta}$-induced dysregulation of AMPA receptor trafficking. Neural Plast. 2016, 3204519.
  17. Jacobsen, J. S., Comery, T. A., Martone, R. L., Elokdah, H., Crandall, D. L., Oganesian, A., Aschmies, S., Kirksey, Y., Gonzales, C., Xu, J., Zhou, H., Atchison, K., Wagner, E., Zaleska, M. M., Das, I., Arias, R. L., Bard, J., Riddell, D., Gardell, S. J., Abou-Gharbia, M., Robichaud, A., Magolda, R., Vlasuk, G. P., Bjornsson, T., Reinhart, P. H. and Pangalos, M. N. (2008) Enhanced clearance of Abeta in brain by sustaining the plasmin proteolysis cascade. Proc. Natl. Acad. Sci. U.S.A. 105, 8754-8759. https://doi.org/10.1073/pnas.0710823105
  18. Jin, M., Shepardson, N., Yang, T., Chen, G., Walsh, D. and Selkoe, D. J. (2011) Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. U.S.A. 108, 5819-5824. https://doi.org/10.1073/pnas.1017033108
  19. Ko, S. Y., Lee, H. E., Park, S. J., Jeon, S. J., Kim, B., Gao, Q., Jang, D. S. and Ryu, J. H. (2015) Spinosin, a C-glucosylflavone, from Zizyphus jujuba var. spinosa ameliorates Abeta1-42 oligomer-induced memory impairment in mice. Biomol. Ther. (Seoul) 23, 156-164. https://doi.org/10.4062/biomolther.2014.110
  20. Krueger, S. R., Ghisu, G. P., Cinelli, P., Gschwend, T. P., Osterwalder, T., Wolfer, D. P. and Sonderegger, P. (1997) Expression of neuroserpin, an inhibitor of tissue plasminogen activator, in the developing and adult nervous system of the mouse. J. Neurosci. 17, 8984-8996. https://doi.org/10.1523/JNEUROSCI.17-23-08984.1997
  21. Lasagna-Reeves, C. A., Castillo-Carranza, D. L., Sengupta, U., Guerrero-Munoz, M. J., Kiritoshi, T., Neugebauer, V., Jackson, G. R. and Kayed, R. (2012) Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci. Rep. 2, 700. https://doi.org/10.1038/srep00700
  22. Lebeurrier, N., Liot, G., Lopez-Atalaya, J. P., Orset, C., Fernandez-Monreal, M., Sonderegger, P., Ali, C. and Vivien, D. (2005) The brain-specific tissue-type plasminogen activator inhibitor, neuroserpin, protects neurons against excitotoxicity both in vitro and in vivo. Mol. Cell. Neurosci. 30, 552-558. https://doi.org/10.1016/j.mcn.2005.09.005
  23. Ledesma, M. D., Da Silva, J. S., Crassaerts, K., Delacourte, A., De Strooper, B. and Dotti, C. G. (2000) Brain plasmin enhances APP alpha-cleavage and Abeta degradation and is reduced in Alzheimer's disease brains. EMBO Rep. 1, 530-535. https://doi.org/10.1093/embo-reports/kvd107
  24. Lee, H. K., Takamiya, K., Han, J. S., Man, H., Kim, C. H., Rumbaugh, G., Yu, S., Ding, L., He, C., Petralia, R. S., Wenthold, R. J., Gallagher, M. and Huganir, R. L. (2003) Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112, 631-643. https://doi.org/10.1016/S0092-8674(03)00122-3
  25. Li, W. Y., Chong, S. S., Huang, E. Y. and Tuan, T. L. (2003) Plasminogen activator/plasmin system: a major player in wound healing? Wound Repair Regen. 11, 239-247. https://doi.org/10.1046/j.1524-475X.2003.11402.x
  26. Maren, S. and Baudry, M. (1995) Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: relationships to learning and memory. Neurobiol. Learn. Mem. 63, 1-18. https://doi.org/10.1006/nlme.1995.1001
  27. Ono, K., Condron, M. M. and Teplow, D. B. (2009) Structure-neurotoxicity relationships of amyloid beta-protein oligomers. Proc. Natl. Acad. Sci. U.S.A. 106, 14745-14750. https://doi.org/10.1073/pnas.0905127106
  28. Parameshwaran, K., Dhanasekaran, M. and Suppiramaniam, V. (2008) Amyloid beta peptides and glutamatergic synaptic dysregulation. Exp. Neurol. 210, 7-13. https://doi.org/10.1016/j.expneurol.2007.10.008
  29. Park, H. J., Jung, I. H., Kwon, H., Yu, J., Jo, E., Kim, H., Park, S. J., Lee, Y. C., Kim, D. H. and Ryu, J. H. (2019) The ethanol extract of Zizyphus jujuba var. spinosa seeds ameliorates the memory deficits in Alzheimer's disease model mice. J. Ethnopharmacol. 233, 73-79. https://doi.org/10.1016/j.jep.2018.12.043
  30. Rodier, M., Prigent-Tessier, A., Bejot, Y., Jacquin, A., Mossiat, C., Marie, C. and Garnier, P. (2014) Exogenous t-PA administration increases hippocampal mature BDNF levels. plasmin- or NMDAdependent mechanism? PLoS ONE 9, e92416. https://doi.org/10.1371/journal.pone.0092416
  31. Sappino, A. P., Madani, R., Huarte, J., Belin, D., Kiss, J. Z., Wohlwend, A. and Vassalli, J. D. (1993) Extracellular proteolysis in the adult murine brain. J. Clin. Invest. 92, 679-685. https://doi.org/10.1172/JCI116637
  32. Schaller, J. and Gerber, S. S. (2011) The plasmin-antiplasmin system: structural and functional aspects. Cell. Mol. Life Sci. 68, 785-801. https://doi.org/10.1007/s00018-010-0566-5
  33. Sengupta, U., Nilson, A. N. and Kayed, R. (2016) The role of amyloid-${\beta}$ oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 6, 42-49. https://doi.org/10.1016/j.ebiom.2016.03.035
  34. Sevush, S. and Leve, N. (1993) Denial of memory deficit in Alzheimer's disease. Am. J. Psychiatry 150, 748-751. https://doi.org/10.1176/ajp.150.5.748
  35. Shergis, J. L., Ni, X., Sarris, J., Zhang, A. L., Guo, X., Xue, C. C., Lu, C. and Hugel, H. (2017) Ziziphus spinosa seeds for insomnia: a review of chemistry and psychopharmacology. Phytomedicine 34, 38-43. https://doi.org/10.1016/j.phymed.2017.07.004
  36. Sutton, M. A. and Schuman, E. M. (2006) Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127, 49-58. https://doi.org/10.1016/j.cell.2006.09.014
  37. Tucker, H. M., Kihiko-Ehmann, M., Wright, S., Rydel, R. E. and Estus, S. (2000) Tissue plasminogen activator requires plasminogen to modulate amyloid-beta neurotoxicity and deposition. J. Neurochem. 75, 2172-2177. https://doi.org/10.1046/j.1471-4159.2000.0752172.x
  38. Van Nostrand, W. E. and Porter, M. (1999) Plasmin cleavage of the amyloid beta-protein: alteration of secondary structure and stimulation of tissue plasminogen activator activity. Biochemistry 38, 11570-11576. https://doi.org/10.1021/bi990610f
  39. Vassalli, J. D., Sappino, A. P. and Belin, D. (1991) The plasminogen activator/plasmin system. J. Clin. Invest. 88, 1067-1072. https://doi.org/10.1172/JCI115405
  40. Walsh, D. M., Klyubin, I., Fadeeva, J. V., Rowan, M. J. and Selkoe, D. J. (2002) Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem. Soc. Trans. 30, 552-557. https://doi.org/10.1042/bst0300552

Cited by

  1. Antidepressant-Like Effects of Ethanol Extract of Ziziphus jujuba Mill Seeds in Mice vol.10, pp.20, 2020, https://doi.org/10.3390/app10207374
  2. Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases vol.166, 2021, https://doi.org/10.1016/j.brainresbull.2020.11.005
  3. Brain-Derived Neurotrophic Factor Signaling in the Pathophysiology of Alzheimer’s Disease: Beneficial Effects of Flavonoids for Neuroprotection vol.22, pp.11, 2021, https://doi.org/10.3390/ijms22115719