DOI QR코드

DOI QR Code

후열 처리에 따른 Ga2O3/4H-SiC 이종접합 다이오드 특성 분석

Characteristics of Ga2O3/4H-SiC Heterojunction Diode with Annealing Process

  • 이영재 (광운대학교 전자재료공학과) ;
  • 구상모 (광운대학교 전자재료공학과)
  • Lee, Young-Jae (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
  • 투고 : 2019.10.22
  • 심사 : 2019.12.24
  • 발행 : 2020.03.01

초록

Ga2O3/n-type 4H-SiC heterojunction diodes were fabricated by RF magnetron sputtering. The optical properties of Ga2O3 and electrical properties of diodes were investigated. I-V characteristics were compared with simulation data from the Atlas software. The band gap of Ga2O3 was changed from 5.01 eV to 4.88 eV through oxygen annealing. The doping concentration of Ga2O3 was extracted from C-V characteristics. The annealed oxygen exhibited twice higher doping concentration. The annealed diodes showed improved turn-on voltage (0.99 V) and lower leakage current (3 pA). Furthermore, the oxygen-annealed diodes exhibited a temperature cross-point when temperature increased, and its ideality factor was lower than that of as-grown diodes.

키워드

참고문헌

  1. B. J. Baliga, J. Appl. Phys., 53, 1759 (1982). [DOI: https://doi.org/10.1063/1.331646]
  2. J. A. Cooper, Mater. Sci. Forum, 389, 15 (2002). [DOI: https://doi.org/10.4028/www.scientific.net/MSF.389-393.15]
  3. A. Y. Polyakov, N. B. Smirnov, I. V. Shchemerov, E. B. Yakimov, S. J. Pearton, C. Fares, J. Yang, F. Ren, J. Kim, P. B. Lagov, V. S. Stoblunov, and A. Kochkova, Appl. Phys. Lett., 113, 092102 (2018) [DOI: https://doi.org/10.1063/1.5049130]
  4. F. Shi, J. Han, Y. Xing, J. Li, L. Zhang, T. He, T. Li, X. Deng, X. Zhang, and B. Zhang. Mater. Lett., 237, 105 (2019). [DOI: https://doi.org/10.1016/j.matlet.2018.11.012]
  5. L. Huang, Q. Feng, G. Han, F. Li, X. Li, L. Fang, X. Xing, J. Zhang, and Y. Hao, IEEE Photonics J., 9 (2017). [DOI: https://doi.org/10.1109/JPHOT.2017.2731625]
  6. S. Nakagomi, T. Sakai, K. Kikuchi, and Y. Kokubun, Phys. Status Solidi A, 216, 1700796 (2018) [DOI: https://doi.org/10.1002/pssa.201700796]
  7. Z. Zhang, E. Farzana, A. R. Arehart, and S. A. Ringel, Appl. Phys. Lett., 108, 052105 (2016) [DOI: https://doi.org/10.1063/1.4941429]
  8. H. Altuntas, I. Donmez, C. Ozgit-Akgun, and N. Biyikli, J. Vac. Sci. Technol., A, 32, 041504 (2014). [DOI: https://doi.org/10.1116/1.4875935]
  9. A. K. Saikumar, S. D. Nehate, and K. B. Sundaram, ECS J. Solid State Sci. Technol., 8, Q3064 (2019). [DOI: https://doi.org/10.1149/2.0141907jss]
  10. M. J. Tadjer, J. L. Lyons, N. Nepal, J. A. Freitas Jr., A. D. Koehler, and G. M. Foster, ECS J. Solid State Sci. Technol., 8, Q3187 (2019). [DOI: https://doi.org/10.1149/2.0341907jss]
  11. A. Y. Polyakov, N. B. Smirnov, I. V. Shchemerov, S. J. Pearton, F. Ren, A. V. Chernykh, P. B. Lagov, and T. V. Kulevoy, APL Mater., 6, 096102 (2018). [DOI: https://doi.org/10.1063/1.5042646]
  12. M. E. Ingebrigtsen, J. B. Varley, A. Y. Kuznetsov, B. G. Svensson, G. Alfieri, A. Mihaila, U. Badstubner, and L. Vines, Appl. Phys. Lett., 12, 042104 (2018). [DOI: https://doi.org/10.1063/1.5020134]
  13. H. Kim, S. Kyoung, T. Kang, J. Y. Kwon, K. H. Kim, and Y. S. Rim, J. Mater. Chem. C, 7, 10953 (2019). [DOI: https://doi.org/10.1039/c9tc02922b]
  14. J. A. Cooper, M. R. Melloch, J. M. Woodall, J. Spitz, K. J. Schoen, and J. Henning, Mater. Sci. Forum, 264, 895 (1998). [DOI: https://doi.org/10.4028/www.scientific.net/MSF.264-268.895]
  15. H. Bartolf, V. K. Sundaramoorthy, A. Mihaila, M. Berthou, P. Godignon, and J. Millan, Mater. Sci. Forum, 778, 795 (2014). [DOI: https://doi.org/10.4028/www.scientific.net/MSF.778-780.795]