DOI QR코드

DOI QR Code

The Effect of N-acetyl cysteine (NAC) loading on the bone formation surrounding sandblasted and large-grit and acid-etched implants in the dog: A pilot study

성견에 식립된 sandblasted and large-grit and acid-etched 임플란트에서 N-acetyl cysteine(NAC)의 탑재가 주위 골형성에 미치는 영향에 대한 선행연구

  • Seo, Jae-Min (Department of Prosthodontics, School of Dentistry, Jeonbuk National University) ;
  • Kim, In-Ju (Department of Prosthodontics, School of Dentistry, Jeonbuk National University) ;
  • Bae, Min-Soo (Department of Prosthodontics, School of Dentistry, Jeonbuk National University) ;
  • Lee, Jung-Jin (Department of Prosthodontics, School of Dentistry, Jeonbuk National University) ;
  • Ahn, Seung-Geun (Department of Prosthodontics, School of Dentistry, Jeonbuk National University)
  • 서재민 (전북대학교 치의학전문대학원 치과보철학교실) ;
  • 김인주 (전북대학교 치의학전문대학원 치과보철학교실) ;
  • 배민수 (전북대학교 치의학전문대학원 치과보철학교실) ;
  • 이정진 (전북대학교 치의학전문대학원 치과보철학교실) ;
  • 안승근 (전북대학교 치의학전문대학원 치과보철학교실)
  • Received : 2019.09.11
  • Accepted : 2020.01.13
  • Published : 2020.04.30

Abstract

Purpose: The aim of the present study was to investigate the effects of N-acetyl cysteine (NAC) loading on the bone formation surrounding sandblasted, large-grit and acid-etched (SLA) implants. Materials and methods: Implantation of NAC loaded SLA implants (NSI group) and SLA implants (SI group) was performed bilaterally in the mandible of 4 adult beagle dogs (each group, n = 8). The animals were sacrificed after a healing period of 3 and 6 weeks, respectively (n = 2 animal each). Dissected blocks were processed for histomorphometrical analysis. Bone to implant contact percentage (BIC%) and bone volume (BV%) were assessed histomorphometrically. Results: BIC% of NAC loaded SLA implants were about 50% higher than that of SLA implants at 3 weeks of bone healing, but not significantly (51.79 vs 35.43%; P=.185). BV% of NAC loaded SLA implants were significantly higher than that of SLA implants at 3 weeks of bone healing (45.09 vs 37.57 %; P=.044). At 6 weeks of bone healing, BIC% and BV% of two experimental groups were similar (P>.05). Conclusion: Within the limits of the present study, NAC loading have a positive effects on the early bone formation surrounding SLA implants. So, it might be concluded that NAC loading enhance the osseointegration and shorten the healing time after implantation of the SLA implants.

목적: N-acetyl cysteine (NAC)를 탑재한 sandblasted and large-grit and acid-etched (SLA) 임플란트를 성견에 식립한 후, 조직형태학적 분석을 통하여 NAC가 SLA 임플란트 주위의 초기 골형성에 미치는 영향을 알아보고자 한다. 재료 및 방법: NAC 탑재 여부에 따라 2개의 실험군으로 구성하였으며, SI 군은 NAC를 탑재하지 않은 SLA 임플란트로, NSI 군은 NAC를 탑재한 SLA 임플란트로 설정하였다. 4마리의 성체 비글 견에 두 실험군의 임플란트를 식립하고(각 군당 n = 8) 술 후 3주와 6주에 각각 2마리의 비글 견을 희생하여 식립된 임플란트 매식체와 주위 골 조직을 채취하였다. 조직 표본을 제작하고 조직형태학적 검사를 통해 골-임플란트 접촉률 및 골면적비율을 계산하였다. NAC 탑재 여부에 따른 각 실험군간 골-임플란트 접촉률과 골면적비율의 유의성을 알아보기 위해 독립표본 t검정을 이용한 통계분석을 시행하였다(α = .05). 결과: 3주차의 경우 NAC를 탑재한 SLA 임플란트가 일반 SLA 임플란트보다 약 1.5배 높은 골-임플란트 접촉률을 보였으나 통계적 유의성은 없었다(51.79 vs 35.43%; P = .185). 골면적 비율에서는 NAC를 탑재한 SLA 임플란트가 일반 SLA 임플란트보다 통계적으로 유의성 있게 높은 결과 값을 보였다(45.09 vs 37.57 %; P = .044). 6주차의 경우 골-임플란트 접촉률과 골면적 비율 모두에서 NAC를 탑재한 SLA 임플란트와 일반 SLA 임플란트가 비슷한 결과 값을 보였다(P > .05). 결론: 본 실험의 한계 내에서 NAC는 SLA 임플란트 주위의 초기 골형성에 긍정적인 영향을 미침으로써 임플란트의 골유착기간을 단축시키고 하중 부담시기를 앞당기는 데에 기여할 것이라고 사료된다.

Keywords

References

  1. Buser D, Mericske-Stern R, Bernard JP, Behneke A, Behneke N, Hirt HP, Belser UC, Lang NP. Long-term evaluation of non-submerged ITI implants. Part 1: 8-year life table analysis of a prospective multi-center study with 2359 implants. Clin Oral Implants Res 1997;8:161-72. https://doi.org/10.1034/j.1600-0501.1997.080302.x
  2. Jemt T, Chai J, Harnett J, Heath MR, Hutton JE, Johns RB, McKenna S, McNamara DC, van Steenberghe D, Taylor R, Watson RM, Herrmann I. A 5-year prospective multicenter follow-up report on overdentures supported by osseointegrated implants. Int J Oral Maxillofac Implants 1996;11:291-8.
  3. Lambrecht JT, Filippi A, Kunzel AR, Schiel HJ. Long-term evaluation of submerged and nonsubmerged ITI solid-screw titanium implants: a 10-year life table analysis of 468 implants. Int J Oral Maxillofac Implants 2003;18:826-34.
  4. Lindquist LW1, Carlsson GE, Jemt T. A prospective 15-year follow-up study of mandibular fixed prostheses supported by osseointegrated implants. Clinical results and marginal bone loss. Clin Oral Implants Res 1996;7:329-36. https://doi.org/10.1034/j.1600-0501.1996.070405.x
  5. Branemark PI, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969;3:81-100. https://doi.org/10.3109/02844316909036699
  6. Albrektsson T. Direct bone anchorage of dental implants. J Prosthet Dent 1983;50:255-61. https://doi.org/10.1016/0022-3913(83)90027-6
  7. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont 1998;11:391-401.
  8. Raghavendra S, Wood MC, Taylor TD. Early wound healing around endosseous implants: a review of the literature. Int J Oral Maxillofac Implants 2005;20:425-31.
  9. Puleo DA, Nanci A. Understanding and controlling the boneimplant interface. Biomaterials 1999;20:2311-21. https://doi.org/10.1016/S0142-9612(99)00160-X
  10. Lai HC, Zhuang LF, Zhang ZY, Wieland M, Liu X. Bone apposition around two different sandblasted, large-grit and acidetched implant surfaces at sites with coronal circumferential defects: an experimental study in dogs. Clin Oral Implants Res 2009;20:247-53. https://doi.org/10.1111/j.1600-0501.2008.01651.x
  11. Binon PP. Implants and components: entering the new millennium. Int J Oral Maxillofac Implants 2000;15:76-94.
  12. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25:889-902. https://doi.org/10.1002/jbm.820250708
  13. Cooper LF. A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosthet Dent 2000;84:522-34. https://doi.org/10.1067/mpr.2000.111966
  14. Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. J Biomed Mater Res 1998;40:1-11. https://doi.org/10.1002/(SICI)1097-4636(199804)40:1<1::AID-JBM1>3.0.CO;2-Q
  15. Wennerberg A, Hallgren C, Johansson C, Danelli S. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implants Res 1998;9:11-9. https://doi.org/10.1034/j.1600-0501.1998.090102.x
  16. Akimoto K1, Becker W, Persson R, Baker DA, Rohrer MD, O'Neal RB. Evaluation of titanium implants placed into simulated extraction sockets: a study in dogs. Int J Oral Maxillofac Implants 1999;14:351-60.
  17. Botticelli D, Berglundh T, Buser D, Lindhe J. Appositional bone formation in marginal defects at implants. Clin Oral Implants Res 2003;14:1-9. https://doi.org/10.1034/j.1600-0501.2003.140101.x
  18. Botticelli D, Berglundh T, Buser D, Lindhe J. The jumping distance revisited: An experimental study in the dog. Clin Oral Implants Res 2003;14:35-42. https://doi.org/10.1034/j.1600-0501.2003.140105.x
  19. Botticelli D, Berglundh T, Lindhe J. The influence of a biomaterial on the closure of a marginal hard tissue defect adjacent to implants. An experimental study in the dog. Clin Oral Implants Res 2004;15:285-92. https://doi.org/10.1046/j.1600-0501.2003.01008.x
  20. Botticelli D, Persson LG, Lindhe J, Berglundh T. Bone tissue formation adjacent to implants placed in fresh extraction sockets: an experimental study in dogs. Clin Oral Implants Res 2006;17:351-8. https://doi.org/10.1111/j.1600-0501.2006.01270.x
  21. Jung UW, Kim CS, Choi SH, Cho KS, Inoue T, Kim CK. Healing of surgically created circumferential gap around nonsubmerged-type implants in dogs: a histomorphometric study. Clin Oral Implants Res 2007;18:171-8. https://doi.org/10.1111/j.1600-0501.2006.01310.x
  22. Schwarz F, Ferrari D, Herten M, Mihatovic I, Wieland M, Sager M, Becker J. Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs. J Periodontol 2007;78:2171-84. https://doi.org/10.1902/jop.2007.070157
  23. Roccuzzo M, Bunino M, Prioglio F, Bianchi SD. Early loading of sandblasted and acid-etched (SLA) implants: a prospective split-mouth comparative study. Clin Oral Implants Res 2001;12:572-8. https://doi.org/10.1034/j.1600-0501.2001.120604.x
  24. Cochran DL, Buser D, ten Bruggenkate CM, Weingart D, Taylor TM, Bernard JP, Peters F, Simpson JP. The use of reduced healing times on ITI implants with a sandblasted and acid-etched (SLA) surface: early results from clinical trials on ITI SLA implants. Clin Oral Implants Res 2002;13:144-53. https://doi.org/10.1034/j.1600-0501.2002.130204.x
  25. Bornstein MM, Lussi A, Schmid B, Belser UC, Buser D. Early loading of nonsubmerged titanium implants with a sandblasted and acid-etched (SLA) surface: 3-year results of a prospective study in partially edentulous patients. Int J Oral Maxillofac Implants 2003;18:659-66.
  26. Szmukler-Moncler S1, Perrin D, Ahossi V, Magnin G, Bernard JP. Biological properties of acid etched titanium implants: effect of sandblasting on bone anchorage. J Biomed Mater Res B Appl Biomater 2004;68:149-59.
  27. Trisi P, Marcato C, Todisco M. Bone-to-implant apposition with machined and MTX microtextured implant surfaces in human sinus grafts. Int J Periodontics Restorative Dent 2003;23:427-37.
  28. Boyan BD, Batzer R, Kieswetter K, Liu Y, Cochran DL, Szmuckler-Moncler S, Dean DD, Schwartz Z. Titanium surface roughness alters responsiveness of MG63 osteoblastlike cells to 1 alpha,25-(OH)2D3. J Biomed Mater Res 1998;39:77-85. https://doi.org/10.1002/(SICI)1097-4636(199801)39:1<77::AID-JBM10>3.0.CO;2-L
  29. Cochran DL, Hermann JS, Schenk RK, Higginbottom FL, Buser D. Biologic width around titanium implants. A histometric analysis of the implanto-gingival junction around unloaded and loaded nonsubmerged implants in the canine mandible. J Periodontol 1997;68:186-98. https://doi.org/10.1902/jop.1997.68.2.186
  30. Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, Boyan BD. Surface roughness modulates the local production of growth factors and cytokines by osteoblast- like MG-63 cells. J Biomed Mater Res 1996;32:55-63. https://doi.org/10.1002/(SICI)1097-4636(199609)32:1<55::AID-JBM7>3.0.CO;2-O
  31. Cochran DL. The scientific basis for and clinical experiences with Straumann implants including the ITI Dental Implant System: a consensus report. Clin Oral Implants Res 2000;11:33-58. https://doi.org/10.1034/j.1600-0501.2000.011S1033.x
  32. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A, Steinemann SG. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 2004;83:529-33. https://doi.org/10.1177/154405910408300704
  33. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, Boyan BD. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A 2005;74:49-58.
  34. Basu S, Michaelsson K, Olofsson H, Johansson S, Melhus H. Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 2001;288:275-9. https://doi.org/10.1006/bbrc.2001.5747
  35. Lee DH, Lim BS, Lee YK, Yang HC. Effects of hydrogen peroxide (H2O2) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines. Cell Biol Toxicol 2006;22:39-46. https://doi.org/10.1007/s10565-006-0018-z
  36. Mody N1, Parhami F, Sarafian TA, Demer LL. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 2001;31:509-19. https://doi.org/10.1016/S0891-5849(01)00610-4
  37. Eckhardt A, Gerstmayr N, Hiller KA, Bolay C, Waha C, Spagnuolo G, Camargo C, Schmalz G, Schweikl H. TEGDMA-induced oxidative DNA damage and activation of ATM and MAP kinases. Biomaterials 2009;30:2006-14. https://doi.org/10.1016/j.biomaterials.2008.12.045
  38. Ziment I. Acetylcysteine: a drug with an interesting past and a fascinating future. Respiration 1986;50:26-30. https://doi.org/10.1159/000195085
  39. Schweikl H, Spagnuolo G, Schmalz G. Genetic and cellular toxicology of dental resin monomers. J Dent Res 2006;85:870-7. https://doi.org/10.1177/154405910608501001
  40. Meister A, Anderson ME. Glutathione. Annu Rev Biochem 1983;52:711-60. https://doi.org/10.1146/annurev.bi.52.070183.003431
  41. Lee YH, Lee NH, Bhattarai G, Oh YT, Yu MK, Yoo ID, Jhee EC, Yi HK. Enhancement of osteoblast biocompatibility on titanium surface with Terrein treatment. Cell Biochem Funct 2010;28:678-85. https://doi.org/10.1002/cbf.1708
  42. Lee YH, Bhattarai G, Park IS, Kim GR, Kim GE, Lee MH, Yi HK. Bone regeneration around N-acetyl cysteine-loaded nanotube titanium dental implant in rat mandible. Biomaterials 2013;34:10199-208. https://doi.org/10.1016/j.biomaterials.2013.08.080
  43. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ 2003;67:932-49. https://doi.org/10.1002/j.0022-0337.2003.67.8.tb03681.x
  44. Davies JE. Bone bonding at natural and biomaterial surfaces. Biomaterials 2007;28:5058-67. https://doi.org/10.1016/j.biomaterials.2007.07.049
  45. Wennerberg A, Albrektsson T, Andersson B. Design and surface characteristics of 13 commercially available oral implant systems. Int J Oral Maxillofac Implants 1993;8:622-33.
  46. Park JY, Davies JE. Red blood cell and platelet interactions with titanium implant surfaces. Clin Oral Implants Res 2000;11:530-9. https://doi.org/10.1034/j.1600-0501.2000.011006530.x
  47. Trisi P, Lazzara R, Rebaudi A, Rao W, Testori T, Porter SS. Bone-implant contact on machined and dual acid-etched surfaces after 2 months of healing in the human maxilla. J Periodontol 2003;74:945-56. https://doi.org/10.1902/jop.2003.74.7.945
  48. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont 1998;11:391-401.
  49. Trisi P, Lazzara R, Rao W, Rebaudi A. Bone-implant contact and bone quality: evaluation of expected and actual bone contact on machined and osseotite implant surfaces. Int J Periodontics Restorative Dent 2002;22:535-45.
  50. Perrin D, Szmukler-Moncler S, Echikou C, Pointaire P, Bernard JP. Bone response to alteration of surface topography and surface composition of sandblasted and acid etched (SLA) implants. Clin Oral Implants Res 2002;13:465-9. https://doi.org/10.1034/j.1600-0501.2002.130504.x
  51. Shalabi MM, Gortemaker A, Van't Hof MA, Jansen JA, Creugers NH. Implant surface roughness and bone healing: a systematic review. J Dent Res 2006;85:496-500. https://doi.org/10.1177/154405910608500603
  52. Feng YF, Wang L, Zhang Y, Li X, Ma ZS, Zou JW, Lei W, Zhang ZY. Effect of reactive oxygen species overproduction on osteogenesis of porous titanium implant in the present of diabetes mellitus. Biomaterials 2013;34:2234-43. https://doi.org/10.1016/j.biomaterials.2012.12.023
  53. Yamada M, Minamikawa H, Ueno T, Sakurai K, Ogawa T. Nacetyl cysteine improves affinity of beta-tricalcium phosphate granules for cultured osteoblast-like cells. J Biomater Appl 2012;27:27-36. https://doi.org/10.1177/0885328210383598
  54. Mayahara K, Yamaguchi A, Takenouchi H, Kariya T, Taguchi H, Shimizu N. Osteoblasts stimulate osteoclastogenesis via RANKL expression more strongly than periodontal ligament cells do in response to PGE(2). Arch Oral Biol 2012;57:1377-84. https://doi.org/10.1016/j.archoralbio.2012.07.009
  55. Tripuwabhrut P, Mustafa M, Gjerde CG, Brudvik P, Mustafa K. Effect of compressive force on human osteoblast-like cells and bone remodelling: an in vitro study. Arch Oral Biol 2013;58:826-36. https://doi.org/10.1016/j.archoralbio.2013.01.004
  56. Barker TH, Baneyx G, Cardo-Vila M, Workman GA, Weaver M, Menon PM, Dedhar S, Rempel SA, Arap W, Pasqualini R, Vogel V, Sage EH. SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity. J Biol Chem 2005;280:36483-93. https://doi.org/10.1074/jbc.M504663200
  57. Lee DW, Kook SH, Ji H, Lee SA, Choi KC, Lee KY, Lee JC. N-acetyl cysteine inhibits H2O2-mediated reduction in the mineralization of MC3T3-E1 cells by down-regulating Nrf2/HO-1 pathway. BMB Rep 2015;48:636-41. https://doi.org/10.5483/BMBRep.2015.48.11.112