References
-
L. Carlitz, Gauss sums over finite fields of order
$2^n$ , Acta Arith. 15 (1968/1969), 247-265. https://doi.org/10.4064/aa-15-3-247-265 - L. Carlitz, A note on exponential sums, Pacific J. Math. 30 (1969), 35-37. http://projecteuclid.org/euclid.pjm/1102978697 https://doi.org/10.2140/pjm.1969.30.35
-
P. Charpin, T. Helleseth, and V. Zinoviev, Propagation characteristics of
$x\;\rightarrow\;x^{-1}$ and Kloosterman sums, Finite Fields Appl. 13 (2007), no. 2, 366-381. https://doi.org/10.1016/j.ffa.2005.08.007 - J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coeffcients of cusp forms, Invent. Math. 70 (1982/83), no. 2, 219-288. https://doi.org/10.1007/BF01390728
- H. Dobbertin, P. Felke, T. Helleseth, and P. Rosendahl, Niho type cross-correlation functions via Dickson polynomials and Kloosterman sums, IEEE Trans. Inform. Theory 52 (2006), no. 2, 613-627. https://doi.org/10.1109/TIT.2005.862094
- R. Evans, Seventh power moments of Kloosterman sums, Israel J. Math. 175 (2010), 349-362. https://doi.org/10.1007/s11856-010-0014-0
- K. Hulek, J. Spandaw, B. van Geemen, and D. van Straten, The modularity of the Barth-Nieto quintic and its relatives, Adv. Geom. 1 (2001), no. 3, 263-289. https://doi.org/10.1515/advg.2001.017
- D. S. Kim, Gauss sums for symplectic groups over a finite field, Monatsh. Math. 126 (1998), no. 1, 55-71. https://doi.org/10.1007/BF01312455
- D. S. Kim, Infinite families of recursive formulas generating power moments of ternary Kloosterman sums with square arguments arising from symplectic groups, Adv. Math. Commun. 3 (2009), no. 2, 167-178. https://doi.org/10.3934/amc.2009.3.167
- D. S. Kim, Codes associated with special linear groups and power moments of multidimensional Kloosterman sums, Ann. Mat. Pura Appl. (4) 190 (2011), no. 1, 61-76. https://doi.org/10.1007/s10231-010-0138-1
-
D. S. Kim, Codes associated with
$O^+(2n,\;2^r)$ and power moments of Kloosterman sums, Integers 12 (2012), no. 2, 237-257. https://doi.org/10.1515/integ.2011.100 - D. S. Kim and Y. H. Park, Gauss sums for orthogonal groups over a finite field of characteristic two, Acta Arith. 82 (1997), no. 4, 331-357. https://doi.org/10.4064/aa-82-4-331-357
-
H. D. Kloosterman, On the representation of numbers in the form
$ax^2+by^2+cz^2+dt^2$ , Acta Math. 49 (1927), no. 3-4, 407-464. https://doi.org/10.1007/BF02564120 - G. Lachaud and J. Wolfmann, The weights of the orthogonals of the extended quadratic binary Goppa codes, IEEE Trans. Inform. Theory 36 (1990), no. 3, 686-692. https://doi.org/10.1109/18.54892
- R. Lidl and H. Niederreiter, Finite Fields, second edition, Encyclopedia of Mathematics and its Applications, 20, Cambridge University Press, Cambridge, 1997.
-
R. Livne, Motivic orthogonal two-dimensional representations of Gal(
$\bar-Q}$ /Q), Israel J. Math. 92 (1995), no. 1-3, 149-156. https://doi.org/10.1007/BF02762074 - F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Publishing Co., Amsterdam, 1977.
- M. J. Moisio, The moments of a Kloosterman sum and the weight distribution of a Zetterberg-type binary cyclic code, IEEE Trans. Inform. Theory 53 (2007), no. 2, 843-847. https://doi.org/10.1109/TIT.2006.889020
- C. Peters, J. Top, and M. van der Vlugt, The Hasse zeta function of a K3 surface related to the number of words of weight 5 in the Melas codes, J. Reine Angew. Math. 432 (1992), 151-176.
- H. Salie, Uber die Kloostermanschen Summen S(u, v; q), Math. Z. 34 (1931), 91-109. https://doi.org/10.1007/BF01180579
- R. Schoof and M. van der Vlugt, Hecke operators and the weight distributions of certain codes, J. Combin. Theory Ser. A 57 (1991), no. 2, 163-186. https://doi.org/10.1016/0097-3165(91)90016-A