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CONSTRUCTION OF RECURSIVE FORMULAS

GENERATING POWER MOMENTS OF KLOOSTERMAN

SUMS: O+(2n, 2r) CASE

Dae San Kim

Abstract. In this paper, we construct four infinite families of binary
linear codes associated with double cosets with respect to a certain max-

imal parabolic subgroup of the orthogonal group O+(2n, 2r). And we

obtain two infinite families of recursive formulas for the power moments
of Kloosterman sums and those of 2-dimensional Kloosterman sums in

terms of the frequencies of weights in the codes. This is done via Pless’
power moment identity and by utilizing the explicit expressions of expo-

nential sums over those double cosets related to the evaluations of “Gauss

sums” for the orthogonal groups O+(2n, 2r).

1. Introduction

Let ψ be a nontrivial additive character of the finite field Fq with q = pr

elements (p a prime), and let m be a positive integer. Then the m-dimensional
Kloosterman sum Km(ψ; a) ([15]) is defined by

Km(ψ; a) =
∑

α1,...,αm∈F∗
q

ψ(α1 + · · ·+ αm + aα−11 · · ·α−1m ), (a ∈ F∗q).

In particular, if m = 1, then K1(ψ; a) is simply denoted by K(ψ; a), and is
called the Kloosterman sum. The Kloosterman sum was introduced in 1926 to
give an estimate for the Fourier coefficients of modular forms (cf. [4,13]). It has
also been studied to solve various problems in coding theory and cryptography
over finite fields of characteristic two (cf. [3, 5]).

For each nonnegative integer h, we denote by MKm(ψ)h the h-th moment
of the m-dimensional Kloosterman sum Km(ψ; a), i.e.,

MKm(ψ)h =
∑
a∈F∗

q

Km(ψ; a)h.
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If ψ = λ is the canonical additive character of Fq, then MKm(λ)h will be
simply denoted by MKh

m. If further m = 1, for brevity MKh
1 will be indicated

by MKh.
Explicit computations on power moments of Kloosterman sums were initi-

ated in the paper [20] of Salié in 1931, where it is shown that, for any odd
prime q,

MKh = q2Mh−1 − (q − 1)h−1 + 2(−1)h−1(h ≥ 1).

Here M0 = 0, and for h ∈ Z>0,

Mh = |{(α1, . . . , αh) ∈ (F∗q)h |
h∑
j=1

αj = 1 =

h∑
j=1

α−1j }|.

For q = p an odd prime, Salié obtained MK1, MK2, MK3, MK4 in [20] by
determiningM1,M2,M3. MK5 can be expressed in terms of the p-th eigenvalue
of a weight 3 newform on Γ0(15) (cf. [16,19]). MK6 can be expressed in terms
of the p-th eigenvalue of a weight 4 newform on Γ0(6) (cf. [7]). In [6], Evans was
led to propose a conjecture which expresses MK7 in terms of Hecke eigenvalues
of a weight 3 newform on Γ0(525) with quartic nebentypus of conductor 105.

From now on, let us assume that q = 2r. Carlitz [1] evaluated MKh for
h ≤ 4. Recently, Moisio was able to find explicit expressions of MKh, for the
other values of h with h ≤ 10 (cf. [18]). This was done, via Pless’ power moment
identity, by connecting moments of Kloosterman sums and the frequencies of
weights in the binary Zetterberg code of length q + 1, which were known by
the work of Schoof and Vlugt in [21].

In [10], the binary linear codes C(SL(n, q)) associated with finite special
linear groups SL(n, q) were constructed when n, q are both powers of two. Then
we obtained a recursive formula for the power moments of multi-dimensional
Kloosterman sums in terms of the frequencies of weights in C(SL(n, q)).

In this paper, we will be able to produce two infinite families of recursive
formulas generating power moments of Kloosterman sums and two those of
2-dimensional Kloosterman sums. To do that, we construct four infinite fam-
ilies of binary linear codes C(DC+

1 (n, q)) (n = 2, 4, . . .), C(DC−1 (n, q)) (n =
1, 3, . . .), both associated with P+σ+

n−1P
+, and C(DC+

2 (n, q)) (n = 2, 4, . . .),

C(DC−2 (n, q)) (n = 3, 5, . . .), both associated with P+σ+
n−2P

+, with respect
to the maximal parabolic subgroup P+ = P+(2n, q) of the orthogonal group
O+(2n, q), and express those power moments in terms of the frequencies of
weights in each code. Then, thanks to our previous results on the explicit
expressions of exponential sums over those double cosets related to the evalua-
tions of “Gauss sums” for the orthogonal groups O+(2n, q) [12], we can express
the weight of each codeword in the duals of the codes in terms of Kloosterman
or 2-dimensional Kloosterman sums. Then our formulas will follow immedi-
ately from the Pless’ power moment identity. Analogously to these, in [9],
for q a power of three, two infinite families of ternary linear codes associated
with double cosets in the symplectic group Sp(2n, q) were constructed in order
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to generate infinite families of recursive formulas for the power moments of
Kloosterman sums with square arguments and for the even power moments of
those in terms of the frequencies of weights in those codes. We emphasize here
that there have been only a few recursive formulas generating power moments
of Kloosterman sums including the one in [18].

Theorem 1.1 in the following (cf. (9), (10), (12)-(14)) is the main result of
this paper. To simplify notations, we introduce the following ones which will
be used throughout this paper at various places.

(1) A+
1 (n, q) = q

1
4 (5n

2−6n) [n1]q

n/2∏
j=1

(q2j−1 − 1),

(2) B+
1 (n, q) = q

1
4 (n−2)

2
n/2∏
j=1

(q2j − 1),

(3) A+
2 (n, q) = q

1
4 (5n

2−6n) [n2]q

(n−2)/2∏
j=1

(q2j−1 − 1),

(4) B+
2 (n, q) = q

1
4 (n

2−8n+12)(qn−1 − 1)(qn − 1)

(n−2)/2∏
j=1

(q2j − 1),

(5) A−1 (n, q) = q
1
4 (5n

2−4n−1) [n1]q

(n−1)/2∏
j=1

(q2j−1 − 1),

(6) B−1 (n, q) = q
1
4 (n

2−6n+5)(qn − 1)

(n−1)/2∏
j=1

(q2j − 1),

(7) A−2 (n, q) = q
1
4 (5n

2−8n+3) [n2]q

(n−1)/2∏
j=1

(q2j−1 − 1),

(8) B−2 (n, q) = q
1
4 (n−3)

2

(qn − 1)

(n−1)/2∏
j=1

(q2j − 1).

From now on, it is assumed that either + signs or − signs are chosen ev-
erywhere, whenever ± signs appear. Henceforth we agree that the binomial
coefficient

(
b
a

)
= 0, if a > b or a < 0.
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Theorem 1.1. Let q = 2r. Then, with the notations in (1)-(8), we have the
following.

(a) With + signs everywhere for ± signs, we have a recursive formula gen-
erating power moments of Kloosterman sums over Fq, for each n ≥ 2 even and
all q. Also, with − signs everywhere for ± signs, we have such a formula, for
either each n ≥ 3 odd and all q, or n = 1 and q ≥ 8:

MKh =

h−1∑
l=0

(−1)h+l+1

(
h

l

)
B±1 (n, q)h−lMKl

+ qA±1 (n, q)−h
min{N±

1 (n,q),h}∑
j=0

(−1)h+jC±1,j(n, q)(9)

h∑
t=j

t!S(h, t)2h−t
(
N±1 (n, q)− j
N±1 (n, q)− t

)
(h = 1, 2, . . .),

where N±1 (n, q) = |DC±1 (n, q)| = A±1 (n, q)B±1 (n, q), and {C±1,j(n, q)}
N±

1 (n,q)
j=0 is

the weight distribution of C(DC±1 (n, q)) given by

C±1,j(n, q) =
∑(

q−1A±1 (n, q)(B±1 (n, q) + 1)

ν0

)
×

∏
tr(β−1)=0

(
q−1A±1 (n, q)(B±1 (n, q) + q + 1)

νβ

)
(10)

×
∏

tr(β−1)=1

(
q−1A±1 (n, q)(B±1 (n, q)− q + 1)

νβ

)
.

Here the sum is over all the sets of nonnegative integers {νβ}β∈Fq satisfying∑
β∈Fq νβ = j and

∑
β∈Fq νββ = 0. In addition, S(h, t) is the Stirling number

of the second kind defined by

(11) S(h, t) =
1

t!

t∑
j=0

(−1)t−j
(
t

j

)
jh.

(b) With + signs everywhere for ± signs, we have recursive formulas gen-
erating power moments of 2-dimensional Kloosterman sums over Fq and even
power moments of Kloosterman sums over Fq, for each even n ≥ 2 and all
q ≥ 4. Also, with − signs everywhere for ± signs, we have such formulas, for
each n ≥ 3 odd and q ≥ 4:

MKh
2 =

h−1∑
l=0

(−1)h+l+1

(
h

l

)
(B±2 (n, q)− q2)h−lMKl

2
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+ qA±2 (n, q)−h
min{N±

2 (n,q),h}∑
j=0

(−1)h+jC±2,j(n, q)(12)

h∑
t=j

t!S(h, t)2h−t
(
N±2 (n, q)− j
N±2 (n, q)− t

)
(h = 1, 2, . . .),

and

MK2h =

h−1∑
l=0

(−1)h+l+1

(
h

l

)
(B±2 (n, q)− q2 + q)h−lMK2l

+ qA±2 (n, q)−h
min{N±

2 (n,q),h}∑
j=0

(−1)h+jC±2,j(n, q)(13)

h∑
t=j

t!S(h, t)2h−t
(
N±2 (n, q)− j
N±2 (n, q)− t

)
(h = 1, 2, . . .),

where N±2 (n, q) = |DC±2 (n, q)| = A±2 (n, q)B±2 (n, q), and {C±2,j(n, q)}
N±

2 (n,q)
j=0 is

the weight distribution of C(DC±2 (n, q)) given by

C±2,j(n, q) =
∑(

q−1A±2 (n, q)(B±2 (n, q) + q3 − q2 − 1)

ν0

)
×

∏
|τ |<2

√
q

τ≡−1(4)

∏
K(λ;β−1)=τ

(
q−1A±2 (n, q)(B±2 (n, q) + qτ − q2 − 1)

νβ

)
.(14)

Here the sum is over all the sets of nonnegative integers {νβ}β∈Fq satisfying∑
β∈Fq νβ = j, and

∑
β∈Fq νββ = 0.

The following corollary is just the n = 2 and n = 1 cases of (a) in the
above. It is amusing to note that the recursive formula in (15) and (16),
obtained from the binary code C(DC−1 (1, q)) associated with the double coset
DC−1 (1, q) = P+(2, q), is the same as the one in ([5], (1), (2)), gotten from
the binary code C(SO+(2, q)) associated with the special orthogonal group
SO+(2, q).
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Corollary 1.2. (a) For all q, and h = 1, 2, . . .,

MKh =

h−1∑
l=0

(−1)h+l+1

(
h

l

)
(q2 − 1)h−lMKl

+ q1−2h(q2 − 1)−h
min{q2(q2−1)2,h}∑

j=0

(−1)h+jC+
1,j(2, q)

×
h∑
t=j

t!S(h, t)2h−t
(
q2(q2 − 1)2 − j
q2(q2 − 1)2 − t

)
,

where {C+
1,j(2, q)}

q2(q2−1)2
j=0 is the weight distribution of C(DC+

1 (2, q)) given by

C+
1,j(2, q) =

∑(
q3(q2 − 1)

ν0

) ∏
tr(β−1)=0

(
q2(q − 1)(q + 1)2

νβ

)

×
∏

tr(β−1)=1

(
q2(q + 1)(q − 1)2

νβ

)
.

Here the sum is over all the sets of nonnegative integers {νβ}β∈Fq satisfying∑
β∈Fq νβ = j and

∑
β∈Fq νββ = 0. In addition, S(h, t) is the Stirling number

of the second kind as defined in (11).
(b) Let q ≥ 8. For h = 1, 2, . . .,

MKh =

h−1∑
l=0

(−1)h+l+1

(
h

l

)
(q − 1)h−lMKl

+ q

min{q−1,h}∑
j=0

(−1)h+jC−1,j(1, q)

h∑
t=j

t!S(h, t)2h−t
(
q − 1− j
q − 1− t

)
,

(15)

where {C−1,j(1, q)}
q−1
j=0 is the weight distribution of C(DC−1 (n, q)) given by

(16) C−1,j(n, q) =
∑(

1

ν0

) ∏
tr(β−1)=0

(
2

νβ

)
.

Here the sum is over all the sets of nonnegative integers {ν0} ∪ {νβ}tr(β−1)=0

satisfying ν0 +
∑
tr(β−1)=0 νβ = j and

∑
tr(β−1)=0 νββ = 0.

2. O+(2n, q)

For more details about this section, the reader is referred to the paper [12].
Throughout this paper, the following notations will be used:

q = 2r (r ∈ Z>0),
Fq = the finite field with q elements,
TrA = the trace of A for a square matrix A,
tB = the transpose of B for any matrix B.
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Let θ+ be the nondegenerate quadratic form on the vector space F2n×1
q of

all 2n× 1 column vectors over Fq, given by

θ+(

2n∑
i=1

xie
i) =

n∑
i=1

xixn+i,

where {e1 =t [10 . . . 0], e2 =t [010 . . . 0], . . . , e2n =t [0 . . . 01]} is the standard
basis of F2n×1

q .

The group O+(2n, q) of all isometries of (F2n×1
q , θ+) is given by:

O+(2n, q) =

{
[A B
C D ] ∈ GL(2n, q)

∣∣∣∣tAC, tBD are alternating

tAD+tCB=1n

}

=

{
[A B
C D ] ∈ GL(2n, q)

∣∣∣∣tAB, tCDare alternating

A tD+B tC=1n

}
,

where A,B,C,D are of size n.
Here an n× n matrix (aij) is called alternating if{

aii = 0 for 1 ≤ i ≤ n,
aij = −aji = aji for 1 ≤ i < j ≤ n.

P+ = P+(2n, q) is the maximal parabolic subgroup of O+(2n, q) defined by:

P+(2n, q) =

{[
A 0
0 tA−1

] [
1n B
0 1n

] ∣∣∣∣A ∈ GL(n, q), B alternating

}
.

Then, with respect to P+ = P+(2n, q), the Bruhat decomposition of O+(2n,
q) is given by:

(17) O+(2n, q) =

n∐
r=0

P+σ+
r P

+,

where

σ+
r =


0 0 1r 0
0 1n−r 0 0
1r 0 0 0
0 0 0 1n−r

 ∈ O+(2n, q).

Put, for 0 ≤ r ≤ n,

A+
r = {w ∈ P+(2n, q) |σ+

r w(σ+
r )−1 ∈ P+(2n, q)}.

Expressing O+(2n, q) as a disjoint union of right cosets of P+ = P+(2n, q),
the Bruhat decomposition in (17) can be written as

(18) O+(2n, q) =

n∐
r=0

P+σ+
r (A+

r \P+).
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The order of the general linear group GL(n, q) is given by

gn =

n−1∏
j=0

(qn − qj) = q(
n
2)

n∏
j=1

(qj − 1).

For integers n, r with 0 ≤ r ≤ n, the q-binomial coefficients are defined as:

[nr]q =

r−1∏
j=0

(qn−j − 1)/(qr−j − 1).

Then, for integers n, r with 0 ≤ r ≤ n, we have

(19)
gn

gn−rgr
= qr(n−r) [nr]q .

As it is shown in [12],

(20) |A+
r | = grgn−rq

(n2)qr(2n−3r+1)/2.

Also, it is immediate to see that

(21) |P+(2n, q)| = q(
n
2)gn.

Thus we get, from (19)-(21),

(22) | A+
r \P+(2n, q) |= [nr]q q

(r2),

and

(23) | P+(2n, q)σ+
r P

+(2n, q) |=| P+(2n, q) |2| A+
r |−1= q(

n
2)gn [nr]q q

(r2).

Let

(24) DC+
1 (n, q) = P+(2n, q)σ+

n−1P
+(2n, q) for n = 2, 4, 6, . . . ,

(25) DC+
2 (n, q) = P+(2n, q)σ+

n−2P
+(2n, q) for n = 2, 4, 6, . . . ,

(26) DC−1 (n, q) = P+(2n, q)σ+
n−1P

+(2n, q) for n = 1, 3, 5, . . . ,

(27) DC−2 (n, q) = P+(2n, q)σ+
n−2P

+(2n, q) for n = 3, 5, 7, . . . .

Then, from (23), we have

(28) N±i (n, q) = |DC±i (n, q)| = A±i (n, q)B±i (n, q) for i = 1, 2

(cf. (1)-(8)).
Unless otherwise stated, from now on, we will agree that anything related to

DC+
1 (n, q) and DC−1 (n, q) are defined for n = 2, 4, 6, . . ., anything related to

DC−1 (n, q) for n = 1, 3, 5, . . ., and that anything related to DC−2 (n, q) is defined
for n = 3, 5, 7 . . ..

Also, from (18), (23), we have

|O+(2n, q)| =
n∑
r=0

|P+(2n, q)|2|A+
r |−1
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= 2qn
2−n(qn − 1)

n−1∏
j=1

(q2j − 1),

where one can apply the following q-binomial theorem with x = −1.
n∑
r=0

[nr]q (−1)rq(
r
2)xr = (x; q)n,

with (x; q)n = (1− x)(1− qx) · · · (1− qn−1x) (x an indeterminate, n ∈ Z>0).

3. Exponential sums over double cosets of O+(2n, 2r)

The following notations will be used throughout this paper.

tr(x) = x+ x2 + · · ·+ x2
r−1

the trace function Fq → F2,

λ(x) = (−1)tr(x) the canonical additive character of Fq.

Then any nontrivial additive character ψ of Fq is given by ψ(x) = λ(ax) for a
unique a ∈ F∗q .

For any nontrivial additive character ψ of Fq and a ∈ F∗q , the Kloosterman
sum KGL(t,q)(ψ; a) for GL(t, q) is defined as

KGL(t,q)(ψ; a) =
∑

w∈GL(t,q)

ψ(Trw + a Trw−1).

Notice that, for t = 1, KGL(1,q)(ψ; a) denotes the Kloosterman sum K(ψ; a).
For the Kloosterman sum K(ψ; a), we have the Weil bound (cf. [15])

(29) | K(ψ; a) |≤ 2
√
q.

In [8], it is shown that KGL(t,q)(ψ; a) satisfies the following recursive relation:
for integers t ≥ 2, a ∈ F∗q ,

KGL(t,q)(ψ; a) = qt−1KGL(t−1,q)(ψ; a)K(ψ; a)(30)

+ q2t−2(qt−1 − 1)KGL(t−2,q)(ψ; a),

where we understand that KGL(0,q)(ψ; a) = 1. From (30), an explicit expression
of the Kloosterman sum for GL(t, q) was derived in [8].

In Section 6 of [12], it is shown that the Gauss sum for O+(2n, q) is given
by: ∑

w∈O+(2n,q)

ψ(Trw) =

n∑
r=0

∑
w∈p+σ+

r P+

ψ(Trw)

=

n∑
r=0

|A+
r \P+|

∑
w∈P+

ψ(Trwσ+
r )

= q(
n
2)

n∑
r=0

|A+
r \P+|qr(n−r)srKGL(n−r,q)(ψ; 1).

(31)
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Here ψ is any nontrivial additive character of Fq, s0 = 1, and, for r ∈ Z>0,
sr denotes the number of all r × r nonsingular symmetric matrices over Fq,
which is given by

(32) sr =

{
qr(r+2)/4

∏r/2
j=1(q2j−1 − 1), if r is even,

q(r
2−1)/4∏(r+1)/2

j=1 (q2j−1 − 1), if r is odd,

(cf. [12], Proposition 4.3).
Thus we see from (31), (32), and (22) that, for each r with 0 ≤ r ≤ n,

∑
w∈P+σ+

r P+

ψ(Trw)

=

{
q(
n
2)qrn−

1
4 r

2

[nr]q
∏r/2
j=1(q2j−1 − 1)KGL(n−r,q)(ψ; 1), if r is even,

q(
n
2)qrn−

1
4 (r+1)2 [nr]q

∏(r+1)/2
j=1 (q2j−1 − 1)KGL(n−r,q)(ψ; 1), if r is odd.

(33)

For our purposes, we need four infinite families of exponential sums in (33)
over DC+

1 (n, q) and DC+
2 (n, q) for n = 2, 4, 6, . . ., DC−1 (n, q) for n = 1, 3, 5, . . .,

and DC−2 (n, q) for n = 3, 5, 7, . . .. So we state them separately as a theorem.

Theorem 3.1. Let ψ be any nontrivial additive character of Fq. Then, in the
notations of (1), (3), (5), (7), we have∑

w∈DC±
1 (n,q)

ψ(Trw) = A±1 (n, q)K(ψ; 1),

∑
w∈DC±

2 (n,q)

ψ(Trw) = q−1A±2 (n, q)KGL(2,q)(ψ; 1)

= A±2 (n, q)(K(ψ; 1)2 + q2 − q)
(cf. (33), (30)).

Proposition 3.2 ([11]). For n = 2s(s ∈ Z≥0), and ψ a nontrivial additive
character of Fq,

K(ψ; an) = K(ψ; a).

We need a result of Carlitz for the next corollary.

Theorem 3.3 ([2]). For the canonical additive character λ of Fq, and a ∈ F∗q ,

(34) K2(λ; a) = K(λ; a)2 − q.
The next corollary follows from Theorem 3, Proposition 4, (34), and simple

change of variables.

Corollary 3.4. Let λ be the canonical additive character of Fq, and let a ∈ F∗q .
Then we have ∑

w∈DC±
1 (n,q)

λ(aTrw) = A±1 (n, q)K(λ; a),(35)
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w∈DC±

2 (n,q)

λ(aTrw) = A±2 (n, q)(K(λ; a)2 + q2 − q)

= A±2 (n, q)(K2(λ; a) + q2)

(36)

(cf. (1), (3), (5), (7)).

Proposition 3.5 ([11]). Let λ be the canonical additive character of Fq, m ∈
Z>0, β ∈ Fq. Then

∑
a∈F∗

q

λ(−aβ)Km(λ; a) =

{
qKm−1(λ;β−1) + (−1)m+1, if β 6= 0,

(−1)m+1, if β = 0,
(37)

with the convention K0(λ;β−1) = λ(β−1).

For any integer r with 0 ≤ r ≤ n, and each β ∈ Fq, we let

NP+σ+
r P+(β) = |{w ∈ P+σ+

r P
+ |Trw = β}|.

Then it is easy to see that

(38) qNP+σ+
r P+(β) = |P+σ+

r P
+|+

∑
a∈F∗

q

λ(−aβ)
∑

w∈P+σ+
r P+

λ(aTrw).

Now, from (35)-(38), (24)-(28), and (1)-(8), we have the following result.

Proposition 3.6.

(a)

NDC±
1 (n,q)(β)(39)

= q−1A±1 (n, q)B±1 (n, q) + q−1A±1 (n, q)×


1, β = 0,

q + 1, tr(β−1) = 0,

−q + 1, tr(β−1) = 1.

(b)

NDC±
2 (n,q)(β)(40)

= q−1A±2 (n, q)B±2 (n, q) + q−1A±2 (n, q)×

{
qK(λ;β−1)− q2 − 1, β 6= 0,

q3 − q2 − 1, β = 0.

Corollary 3.7. (a) For all even n ≥ 2 and all q, NDC+
1 (n,q)(β) > 0 for all β.

(b) For all even n ≥ 4 and all q, or n = 2 and all q ≥ 4, NDC+
2 (n,q)(β) > 0

for all β; for n = 2 and all q = 2,

NDC+
2 (2,2)(β) =

{
0, β = 1,

12 = |P+(4, 2)|, β = 0.
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(c) For all odd n ≥ 3 and all q, NDC−
1 (n,q)(β) > 0 for all β; for n = 1 and

all q,

(41) NDC−(1,q)(β) =


1, β = 0,

2, tr(β−1) = 0,

0, tr(β−1) = 1.

(d) For all odd n ≥ 3 and all q, NDC−
2 (n,q)(β) > 0 for all β.

Proof. (a), (c), and (d) are left to the reader.
(b) Let n = 2. Let β 6= 0. Then, from (40), we have

(42) NDC+
2 (2,q)(0) = q2{q2 − 2q − 1 +K(λ;β−1)},

where q2 − 2q− 1 +K(λ;β−1) ≥ q2 − 2q− 1− 2
√
q > 0, for q ≥ 4, by invoking

the Weil bound in (29). Also, observe from (42) that NDC+
2 (2,2)(1) = 0.

On the other hand, if β = 0, then, from (40), we get

NDC+
2 (2,q)(0) = q2(2q2 − 2q − 1) > 0 for all q ≥ 2.

In addition, we note that NDC+
2 (2,2)(0) = 12.

Assume now that n ≥ 4. If β = 0, then, from (40), we see that NDC+
2 (n,q)(0)

> 0 for all q. Let β 6= 0. Then, again by invoking the Weil bound,

NDC+
2 (n,q)(β) ≥ q−1A+

2 (n, q)

× {(qn − 1)(qn−1 − 1)q
1
4 (n−4)

2−1
(n−2)/2∏
j=1

(q2j − 1)− (q2 + 2q
3
2 + 1)}.

Clearly,
∏(n−2)/2
j=1 (q2j − 1) > 1. So we only need to show, for all q ≥ 2,

f(q) = (qn − 1)(qn−1 − 1)q
1
4 (n−4)

2−1 − (q2 + 2q
3
2 + 1) > 0.

But, as n ≥ 4, f(q) ≥ q−1(q4−1)(q3−1)− (q2 + 2q
3
2 + 1) > 0 for all q ≥ 2. �

4. Construction of codes

Here we will construct four infinite families of binary linear codes
C(DC+

1 (n, q)) of length N+
1 (n, q) for n = 2, 4, 6, . . . and all q, C(DC+

2 (n, q)) of
length N+

2 (n, q) for n = 2, 4, 6, . . . and all q, C(DC−1 (n, q)) of length N−1 (n, q)
for n = 1, 3, 5, . . . and all q, and C(DC−2 (n, q)) of length N−2 (n, q) for n =
3, 5, 7, . . . and all q, respectively associated with the double cosets DC+

1 (n, q),
DC+

2 (n, q), DC−1 (n, q), and DC−2 (n, q) (cf. (24)-(27)).
Let g1, g2, . . . , gN±

i (n,q) be fixed orderings of the elements in DC±i (n, q) for

i = 1, 2 by abuse of notations. Then we put

v±i (n, q) = (Trg1, T rg2, . . . , T rgN±
i (n,q)) ∈ FN

±
i (n,q)

q for i = 1, 2.
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The binary codes C(DC+
1 (n, q)), C(DC+

2 (n, q)), C(DC−1 (n, q)), and C(DC−2
(n, q)) are defined as:

C(DC±i (n, q)) = {u ∈ FN
±
i (n,q)

2 |u · v±i (n, q) = 0} for i = 1, 2,(43)

where the dot denotes respectively the usual inner product in FN
±
i (n,q)

q for
i = 1, 2.

The following Delsarte’s theorem is well-known.

Theorem 4.1 ([17]). Let B be a linear code over Fq. Then

(B|F2
)⊥ = tr(B⊥).

In view of this theorem, the respective duals of the codes in (43) are given
by:

C(DC±i (n, q))⊥
(44)

= {c±i (a) = c±i (a;n, q) = (tr(aTrg1), . . . , tr(aTrgN±
i (n,q))) | a ∈ Fq} (i = 1, 2).

Let F+
2 ,F+

q denote the additive groups of the fields F2,Fq, respectively. Then
we have the following exact sequence of groups:

0→ F+
2 → F+

q → Θ(Fq)→ 0,

where the first map is the inclusion and the second one is the Artin-Schreier
operator in characteristic two given by x 7→ Θ(x) = x2 + x. So

(45) Θ(Fq) = {α2 + α | α ∈ Fq}, and [F+
q : Θ(Fq)] = 2.

Theorem 4.2 ([11]). Let λ be the canonical additive character of Fq, and let
β ∈ F∗q . Then
(46)

(a)
∑

α∈Fq−{0,1}

λ(
β

α2 + α
) = K(λ;β)−1, (b)

∑
α∈Fq

λ(
β

α2 + α+ b
) = −K(λ;β)−1,

if x2 + x + b(b ∈ Fq) is irreducible over Fq, or equivalently if b ∈ Fq \ Θ(Fq)
(cf. (45)).

Theorem 4.3. (a) The map Fq → C(DC+
1 (n, q))⊥(a 7→ c+1 (a)) is an F2-linear

isomorphism for n ≥ 2 even and all q.
(b) The map Fq → C(DC+

2 (n, q))⊥(a 7→ c+2 (a)) is an F2-linear isomorphism
for n ≥ 4 even and all q, or n = 2 and q ≥ 4.

(c) The map Fq → C(DC−1 (n, q))⊥(a 7→ c−1 (a)) is an F2-linear isomorphism
for n ≥ 3 odd and all q, or n = 1 and q ≥ 8.

(d) The map Fq → C(DC−2 (n, q))⊥(a 7→ c−2 (a)) is an F2-linear isomorphism
for n ≥ 3 odd and all q.
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Proof. All maps are clearly F2-linear and surjective. Let a be in the kernel
of map Fq → C(DC+

1 (n, q))⊥ (a 7→ c+1 (a)). Then tr(aTrg) = 0 for all g ∈
DC+

1 (n, q). Since, by Corollary 9(a), Tr : DC+
1 (n, q) → Fq is surjective,

tr(aα) = 0 for all α ∈ Fq. This implies that a = 0, since otherwise tr : Fq → F2

would be the zero map. This shows (a). All the other assertions can be handled
in the same way, except for n = 1 and q ≥ 8 case of (c). Assume that we are in
that case. Then, by (41), tr(aβ) = 0 for all β ∈ F∗q with tr(β−1) = 0. Hilbert’s

theorem 90 says that tr(γ) = 0 ⇔ γ = α2 + α for some α ∈ Fq, and hence∑
α∈Fq−{0,1} λ( a

α2+α ) = q − 2. If a 6= 0, then, using (46) and the Weil bound

(29), we would have

q − 2 =
∑

α∈Fq−{0,1}

λ(
a

α2 + α
) = K(λ; a)− 1 ≤ 2

√
q − 1.

But this is impossible, since x > 2
√
x+ 1 for x ≥ 8. �

Remark. One can show that the kernel of the map

Fq → C(DC+
2 (2, 2))⊥(a 7→ c+2 (a)),

and the maps Fq → C(DC−1 (1, q))⊥(a 7→ c−1 (a)), for q = 2, 4, are all equal to
F2.

5. Recursive formulas for power moments of Kloosterman sums

Here we will be able to find, via Pless’ power moment identity, infinite
families of recursive formulas generating power moments of Kloosterman and
2-dimensional Kloosterman sums over all Fq (with three exceptions) in terms of
the frequencies of weights in C(DC+

1 (n, q)) or C(DC−1 (n, q)), and C(DC+
2 (n, q))

or C(DC−2 (n, q)), respectively.

Theorem 5.1 (Pless’ power moment identity, [17]). Let B be an q-ary [n, k]
code, and let Bi (resp. B⊥i ) denote the number of codewords of weight i in B
(resp. in B⊥). Then, for h = 0, 1, 2, . . .,

n∑
j=0

jhBj =

min{n,h}∑
j=0

(−1)jB⊥j

h∑
t=j

t!S(h, t)qk−t(q − 1)t−j
(
n− j
n− t

)
,(47)

where S(h, t) is the Stirling number of the second kind defined in (11).

Lemma 5.2. Let

c±i (a) = (tr(aTrg1), . . . , tr(aTrgN±
i (n,q))) ∈ C(DC±i (n, q))⊥

for i = 1, 2, and a ∈ F∗q . Then the Hamming weights w(c±1 (a)) and w(c±2 (a))
are expressed as follows:

(48) (a) w(c±1 (a)) =
1

2
A±1 (n, q)(B±1 (n, q)−K(λ; a)),
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(49) (b) w(c±2 (a)) =
1

2
A±2 (n, q)(B±2 (n, q)− q2 + q −K(λ; a)2)

(50) =
1

2
A±2 (n, q)(B±2 (n, q)− q2 −K2(λ; a))

(cf. (1)-(8)).

Proof.

w(c±i (a)) =
1

2

N±
i (n,q)∑
j=1

(1− (−1)tr(aTrgj)) =
1

2
(N±i (n, q)−

∑
w∈DC±

i (n,q)

λ(aTrw))

for i = 1, 2. Our results now follow from (28) and (34)-(36). �

Let u = (u1, . . . , uN
N

±
i

(n,q)
) ∈ FN

±
i (n,q)

2 for i = 1, 2, with νβ 1’s in the

coordinate places where Tr(gj) = β for each β ∈ Fq. Then from the definition
of the codes C(DC±i (n, q)) (cf. (43)) that u is a codeword with weight j if
and only if

∑
β∈Fq νβ = j and

∑
β∈Fq νββ = 0 (an identity in Fq). As there

are
∏
β∈Fq

(N
DC

±
i

(n,q)
(β)

νβ

)
many such codewords with weight j, we obtain the

following result.

Proposition 5.3. Let {C±i,j(n, q)}
N±
i (n,q)

j=0 be the weight distribution of

C(DC±i (n, q))

for i = 1, 2. Then we have
(51)

C±i,j(n, q) =
∑ ∏

β∈Fq

(
NDC±

i (n,q)(β)

νβ

)
for 0 ≤ j ≤ N±i (n, q) and i = 1, 2,

where the sum is over all the sets of integers {νβ}β∈Fq (0 ≤ νβ ≤ NDC±
i (n,q)(β)),

satisfying

(52)
∑
β∈Fq

νβ = j and
∑
β∈Fq

νββ = 0.

Corollary 5.4. Let {C±i,j(n, q)}
N±
i (n,q)

j=0 be the weight distribution of

C(DC±i (n, q))

for i = 1, 2. Then we have

C±i,j(n, q) = C±
i,N±

i (n,q)−j(n, q) for all j, with 0 ≤ j ≤ N±i (n, q).

Proof. Under the replacements νβ → NDC±
i (n,q)(β) − νβ for each β ∈ Fq, the

first equation in (52) is changed to N±i (n, q)− j, while the second one in there
and the summands in (51) are left unchanged. The second sum in (52) is
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left unchanged, since
∑
β∈Fq NDC±

i (n,q)(β)β = 0, as one can see by using the

explicit expressions of NDC∓(n,q)(β) in (39) and (40). �

Theorem 5.5 ([14]). Let q = 2r, with r ≥ 2. Then the range R of K(λ; a), as
a varies over F∗q , is given by:

R = {τ ∈ Z | |τ | < 2
√
q, τ ≡ −1 (mod 4)}.

In addition, each value τ ∈ R is attained exactly H(t2 − q) times, where H(d)
is the Kronecker class number of d.

The formulas appearing in the next theorem and stated in (10) and (14)
follow by applying the formula in (51) to each C(DC±i (n, q)), using the ex-
plicit values of NDC±

i (n,q)(β) in (39) and (40), and taking Theorem 5.5 into

consideration.

Theorem 5.6. Let {C±i,j(n, q)}
N±
i (n,q)

j=0 be the weight distribution of

C(DC±i (n, q))

for i = 1, 2, and assume that q ≥ 4 for C(DC±2 (n, q)). Then we have
(a) For j = 0, . . . , N±1 (n, q),

C±1,j(n, q) =
∑(

q−1A±1 (n, q)(B±1 (n, q) + 1)

ν0

)
×

∏
tr(β−1)=0

(
q−1A±1 (n, q)(B±1 (n, q) + q + 1)

νβ

)

×
∏

tr(β−1)=1

(
q−1A±1 (n, q)(B±1 (n, q)− q + 1)

νβ

)
,

where the sum is over all the sets of nonnegative integers {νβ}β∈Fq satisfying∑
β∈Fq νβ = j and

∑
β∈Fq νββ = 0.

(b) For j = 0, . . . , N±2 (n, q),

C±2,j(n, q) =
∑(

q−1A±2 (n, q)(B±2 (n, q) + q3 − q2 − 1)

ν0

)
×

∏
|τ |<2

√
q

τ≡−1(4)

∏
K(λ;β−1)=τ

(
q−1A±2 (n, q)(B±2 (n, q) + qτ − q2 − 1)

νβ

)
,

where the sum is over all the sets of nonnegative integers {νβ}β∈Fq satisfying∑
β∈Fq νβ = j, and

∑
β∈Fq νββ = 0.

From now on, we will assume that, for C(DC+
1 (n, q))⊥, n ≥ 2 even and all

q; for C(DC+
2 (n, q))⊥, n ≥ 2 even and q ≥ 4; for C(DC−1 (n, q))⊥, either n ≥ 3

odd and all q, or n = 1 and q ≥ 8; for C(DC−2 (n, q))⊥, n ≥ 3 odd and q ≥ 4.
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Under these assumptions, each codeword in C(DC±i (n, q))⊥ can be written as
c±i (a) for i = 1, 2, and a unique a ∈ Fq (cf. Theorem 12, (44)).

Now, we apply the Pless’ power moment identity in (47) to C(DC±i (n, q))⊥,
for those values of n and q, in order to get the results in Theorem 1.1 (cf. (9),
(12), (13)) about recursive formulas.

The left hand side of that identity in (47) is equal to∑
a∈F∗

q

w(c±i (a))h,

with w(c±i (a)) given by (48)-(50). We have∑
a∈F∗

q

w(c±1 (a))h =
1

2h
A±1 (n, q)h

∑
a∈F∗

q

(B±1 (n, q)−K(λ; a))h

=
1

2h
A±1 (n, q)h

h∑
l=0

(−1)l
(
h

l

)
B±1 (n, q)h−lMKl.(53)

Similarly, we have

∑
a∈F∗

q

w(c±2 (a))h =
1

2h
A±2 (n, q)h

h∑
l=0

(−1)l
(
h

l

)
(B±2 (n, q)− q2 + q)h−lMK2l

(54)

=
1

2h
A±2 (n, q)h

h∑
l=0

(−1)l
(
h

l

)
(B±2 (n, q)− q2)h−lMKl

2.(55)

Note here that, in view of (34), obtaining power moments of 2-dimensional
Kloosterman sums is equivalent to getting even power moments of Kloosterman
sums. Also, one has to separate the term corresponding to l = h in (53)-(55),
and notes dimF2

C(DC±i (n, q))⊥ = r.

References

[1] L. Carlitz, Gauss sums over finite fields of order 2n, Acta Arith. 15 (1968/1969), 247–

265. https://doi.org/10.4064/aa-15-3-247-265
[2] , A note on exponential sums, Pacific J. Math. 30 (1969), 35–37. http://

projecteuclid.org/euclid.pjm/1102978697

[3] P. Charpin, T. Helleseth, and V. Zinoviev, Propagation characteristics of x 7→ x−1 and
Kloosterman sums, Finite Fields Appl. 13 (2007), no. 2, 366–381. https://doi.org/10.

1016/j.ffa.2005.08.007

[4] J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of
cusp forms, Invent. Math. 70 (1982/83), no. 2, 219–288. https://doi.org/10.1007/

BF01390728

[5] H. Dobbertin, P. Felke, T. Helleseth, and P. Rosendahl, Niho type cross-correlation
functions via Dickson polynomials and Kloosterman sums, IEEE Trans. Inform. Theory

52 (2006), no. 2, 613–627. https://doi.org/10.1109/TIT.2005.862094
[6] R. Evans, Seventh power moments of Kloosterman sums, Israel J. Math. 175 (2010),

349–362. https://doi.org/10.1007/s11856-010-0014-0

https://doi.org/10.4064/aa-15-3-247-265
http://projecteuclid.org/euclid.pjm/1102978697
http://projecteuclid.org/euclid.pjm/1102978697
https://doi.org/10.1016/j.ffa.2005.08.007
https://doi.org/10.1016/j.ffa.2005.08.007
https://doi.org/10.1007/BF01390728
https://doi.org/10.1007/BF01390728
https://doi.org/10.1109/TIT.2005.862094
https://doi.org/10.1007/s11856-010-0014-0


602 D. S. KIM

[7] K. Hulek, J. Spandaw, B. van Geemen, and D. van Straten, The modularity of the

Barth-Nieto quintic and its relatives, Adv. Geom. 1 (2001), no. 3, 263–289. https:

//doi.org/10.1515/advg.2001.017

[8] D. S. Kim, Gauss sums for symplectic groups over a finite field, Monatsh. Math. 126

(1998), no. 1, 55–71. https://doi.org/10.1007/BF01312455
[9] , Infinite families of recursive formulas generating power moments of ternary

Kloosterman sums with square arguments arising from symplectic groups, Adv. Math.

Commun. 3 (2009), no. 2, 167–178. https://doi.org/10.3934/amc.2009.3.167
[10] , Codes associated with special linear groups and power moments of multi-

dimensional Kloosterman sums, Ann. Mat. Pura Appl. (4) 190 (2011), no. 1, 61–76.

https://doi.org/10.1007/s10231-010-0138-1

[11] , Codes associated with O+(2n, 2r) and power moments of Kloosterman sums,

Integers 12 (2012), no. 2, 237–257. https://doi.org/10.1515/integ.2011.100

[12] D. S. Kim and Y. H. Park, Gauss sums for orthogonal groups over a finite field of
characteristic two, Acta Arith. 82 (1997), no. 4, 331–357. https://doi.org/10.4064/

aa-82-4-331-357

[13] H. D. Kloosterman, On the representation of numbers in the form ax2 +by2 +cz2 +dt2,

Acta Math. 49 (1927), no. 3-4, 407–464. https://doi.org/10.1007/BF02564120

[14] G. Lachaud and J. Wolfmann, The weights of the orthogonals of the extended quadratic
binary Goppa codes, IEEE Trans. Inform. Theory 36 (1990), no. 3, 686–692. https:

//doi.org/10.1109/18.54892

[15] R. Lidl and H. Niederreiter, Finite Fields, second edition, Encyclopedia of Mathematics
and its Applications, 20, Cambridge University Press, Cambridge, 1997.
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