Browse > Article
http://dx.doi.org/10.4134/JKMS.j190225

CONSTRUCTION OF RECURSIVE FORMULAS GENERATING POWER MOMENTS OF KLOOSTERMAN SUMS: O+(2n, 2r) CASE  

Kim, Dae San (Department of Mathematics Sogang University)
Publication Information
Journal of the Korean Mathematical Society / v.57, no.3, 2020 , pp. 585-602 More about this Journal
Abstract
In this paper, we construct four infinite families of binary linear codes associated with double cosets with respect to a certain maximal parabolic subgroup of the orthogonal group O+(2n, 2r). And we obtain two infinite families of recursive formulas for the power moments of Kloosterman sums and those of 2-dimensional Kloosterman sums in terms of the frequencies of weights in the codes. This is done via Pless' power moment identity and by utilizing the explicit expressions of exponential sums over those double cosets related to the evaluations of "Gauss sums" for the orthogonal groups O+(2n, 2r).
Keywords
Kloosterman sum; 2-dimensional Kloosterman sum; orthogonal group; double cosets; maximal parabolic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Carlitz, A note on exponential sums, Pacific J. Math. 30 (1969), 35-37. http://projecteuclid.org/euclid.pjm/1102978697   DOI
2 P. Charpin, T. Helleseth, and V. Zinoviev, Propagation characteristics of $x\;\rightarrow\;x^{-1}$ and Kloosterman sums, Finite Fields Appl. 13 (2007), no. 2, 366-381. https://doi.org/10.1016/j.ffa.2005.08.007   DOI
3 J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coeffcients of cusp forms, Invent. Math. 70 (1982/83), no. 2, 219-288. https://doi.org/10.1007/BF01390728   DOI
4 H. Dobbertin, P. Felke, T. Helleseth, and P. Rosendahl, Niho type cross-correlation functions via Dickson polynomials and Kloosterman sums, IEEE Trans. Inform. Theory 52 (2006), no. 2, 613-627. https://doi.org/10.1109/TIT.2005.862094   DOI
5 R. Evans, Seventh power moments of Kloosterman sums, Israel J. Math. 175 (2010), 349-362. https://doi.org/10.1007/s11856-010-0014-0   DOI
6 K. Hulek, J. Spandaw, B. van Geemen, and D. van Straten, The modularity of the Barth-Nieto quintic and its relatives, Adv. Geom. 1 (2001), no. 3, 263-289. https://doi.org/10.1515/advg.2001.017   DOI
7 D. S. Kim, Gauss sums for symplectic groups over a finite field, Monatsh. Math. 126 (1998), no. 1, 55-71. https://doi.org/10.1007/BF01312455   DOI
8 L. Carlitz, Gauss sums over finite fields of order $2^n$, Acta Arith. 15 (1968/1969), 247-265. https://doi.org/10.4064/aa-15-3-247-265   DOI
9 D. S. Kim, Infinite families of recursive formulas generating power moments of ternary Kloosterman sums with square arguments arising from symplectic groups, Adv. Math. Commun. 3 (2009), no. 2, 167-178. https://doi.org/10.3934/amc.2009.3.167   DOI
10 D. S. Kim, Codes associated with special linear groups and power moments of multidimensional Kloosterman sums, Ann. Mat. Pura Appl. (4) 190 (2011), no. 1, 61-76. https://doi.org/10.1007/s10231-010-0138-1   DOI
11 D. S. Kim, Codes associated with $O^+(2n,\;2^r)$ and power moments of Kloosterman sums, Integers 12 (2012), no. 2, 237-257. https://doi.org/10.1515/integ.2011.100   DOI
12 D. S. Kim and Y. H. Park, Gauss sums for orthogonal groups over a finite field of characteristic two, Acta Arith. 82 (1997), no. 4, 331-357. https://doi.org/10.4064/aa-82-4-331-357   DOI
13 H. D. Kloosterman, On the representation of numbers in the form $ax^2+by^2+cz^2+dt^2$, Acta Math. 49 (1927), no. 3-4, 407-464. https://doi.org/10.1007/BF02564120   DOI
14 G. Lachaud and J. Wolfmann, The weights of the orthogonals of the extended quadratic binary Goppa codes, IEEE Trans. Inform. Theory 36 (1990), no. 3, 686-692. https://doi.org/10.1109/18.54892   DOI
15 R. Lidl and H. Niederreiter, Finite Fields, second edition, Encyclopedia of Mathematics and its Applications, 20, Cambridge University Press, Cambridge, 1997.
16 R. Livne, Motivic orthogonal two-dimensional representations of Gal($\bar-Q}$/Q), Israel J. Math. 92 (1995), no. 1-3, 149-156. https://doi.org/10.1007/BF02762074   DOI
17 F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Publishing Co., Amsterdam, 1977.
18 M. J. Moisio, The moments of a Kloosterman sum and the weight distribution of a Zetterberg-type binary cyclic code, IEEE Trans. Inform. Theory 53 (2007), no. 2, 843-847. https://doi.org/10.1109/TIT.2006.889020   DOI
19 C. Peters, J. Top, and M. van der Vlugt, The Hasse zeta function of a K3 surface related to the number of words of weight 5 in the Melas codes, J. Reine Angew. Math. 432 (1992), 151-176.
20 H. Salie, Uber die Kloostermanschen Summen S(u, v; q), Math. Z. 34 (1931), 91-109.   DOI
21 R. Schoof and M. van der Vlugt, Hecke operators and the weight distributions of certain codes, J. Combin. Theory Ser. A 57 (1991), no. 2, 163-186. https://doi.org/10.1016/0097-3165(91)90016-A   DOI