DOI QR코드

DOI QR Code

A Study on Performance Characteristics of Horizontal Axis Tidal Turbine Considering Nose Shape, Angle of Inflow and Tower Structure

수평축 조류발전 터빈의 노즈 형상 및 유입각도, 타워 구조물의 영향을 고려한 터빈 성능특성 분석

  • Heo, Man-Woong (Coastal Development and Ocean Energy Research Center, Korea Institute of Ocean Science & Technology) ;
  • Kim, Dong-Hwan (Coastal Development and Ocean Energy Research Center, Korea Institute of Ocean Science & Technology) ;
  • Yi, Jin-Hak (Coastal Development and Ocean Energy Research Center, Korea Institute of Ocean Science & Technology)
  • 허만웅 (한국해양과학기술원 연안개발에너지연구센터) ;
  • 김동환 (한국해양과학기술원 연안개발에너지연구센터) ;
  • 이진학 (한국해양과학기술원 연안개발에너지연구센터)
  • Received : 2019.12.13
  • Accepted : 2020.01.31
  • Published : 2020.02.28

Abstract

In this study, three-dimensional fluid flow analyses have been performed in order to investigate the performance characteristics of a horizontal axis tidal turbine (HATT) by solving three-dimensional Reynolds-averaged Navier-Stokes equations utilizing the shear-stress-transport turbulence model. The computational domain for the flow analysis has been composed of hexahedral grids, and the grid dependency test has been carried out so as to determine the optimum grid size. Performance characteristics of the HATT have been investigated in consideration of the effects of hub nose geometry, inflow angle, and the tower. It has been found that the power output can be enhanced along with an increase of the ratio of the length to the diameter of the turbine nose, and the power of HATT has been reduced by approximately 10% when the primary fluid flow had an inflow angle of 15°. The power output of downstream HATT is found to be lower than that of the upstream HATT by about 1%.

본 연구에서는 1 MW급 수평축 조류발전기의 출력 및 유동특성을 분석하기 위해 3차원 레이놀즈 평균 나비어-스톡스 해석을 수행하였다. 난류해석을 위해 SST(shear stress transport) 난류모델을 사용하였고, 유동해석을 위한 계산영역은 육면체격자로 구성하였으며, 최적의 격자 크기를 결정하기 위하여 격자 의존성 시험을 수행하였다. 터빈의 노즈 형상 및 유입각도, 그리고 타워 구조물의 영향을 분석하였다. 노즈 형상의 경우 노즈의 직경 대비 축방향 길이의 비가 증가할수록 터빈 출력이 향상되는 결과를 확인할 수 있었고, 유입각도가 약 15° 이상에서는 터빈의 성능이 약 10% 이상 감소하는 것을 확인하였다. 또한 타워 구조물에 의하여 하류식 터빈의 경우 상류식 터빈에 비하여 성능이 1% 감소함을 알 수 있었다.

Keywords

References

  1. Abuan, B.E. and Howell, R.J. (2019). The performance and hydrodynamics in unsteady flow of a horizontal axis tidal turbine. Renewable Energy, 133, 1338-1351. https://doi.org/10.1016/j.renene.2018.09.045
  2. ANSYS CFX 19.2 tutorial (2019). ANSYS Inc.
  3. Batten, W.M.J., Bahaj, A.S., Molland, A.F. and Chaplin, J.R. (2007). Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines. Ocean Engineering, 34, 1013-1020. https://doi.org/10.1016/j.oceaneng.2006.04.008
  4. Goundar, J.N. and Ahmed, M.R. (2013). Design of a horizontal axis tidal current turbine. Applied Energy, 111, 161-174. https://doi.org/10.1016/j.apenergy.2013.04.064
  5. Huang, B., Zhu, G.J. and Kanemoto, T. (2016). Design and performance enhancement of a bi-directional counter-rotating type horizontal axis tidal turbine. Ocean Engineering, 128, 116-123. https://doi.org/10.1016/j.oceaneng.2016.10.012
  6. Kaufmann, N., Carolus, T.H. and Carolus, R. (2017). An enhanced and validated performance and cavitation prediction model for horizontal axis tidal turbine. International Journal of Marine Energy, 19, 145-163. https://doi.org/10.1016/j.ijome.2017.07.003
  7. Kumar, P.M., Seo, J., Seok, W., Rhee, S.H. and Samad, A. (2019). Multi-fidelity optimization of blade thickness parameters for a horizontal axis tidal stream turbine. Renewable Energy, 135, 277-287. https://doi.org/10.1016/j.renene.2018.12.023
  8. Li, Y., Liu, H., Lin, Y., Li, W. and Gu, Y. (2019). Design and test of a 600-kW horizontal-axis tidal current turbine. Energy, 182, 177-186. https://doi.org/10.1016/j.energy.2019.05.154
  9. Ordonez-Sanchez, S., Ellis, R., Porter, K.E., Allmark, M., O'Doherty, T., Mason-Jones, A. and Johnstone, C. (2019). Numerical models to predict the performance of tidal stream turbines working under off-design conditions. Ocean Engineering, 181, 198-211. https://doi.org/10.1016/j.oceaneng.2019.04.027
  10. Park, J.S., Lee, C.Y., Park, J.S., Choi, H.W., Ko, D.H. and Lee, J.L. (2019). Assessment of tidal stream energy resources using a numerical model in Southwestern Sea of Korea. Ocean Science Journal, 54(4), 529-541. https://doi.org/10.1007/s12601-019-0038-2
  11. Ren, Y., Liu, B., Zhang, T. and Fang, Q. (2017). Design and hydrodynamic analysis of horizontal axis tidal stream turbines with winglets. Ocean Engineering, 144, 374-383. https://doi.org/10.1016/j.oceaneng.2017.09.038
  12. Seo, J., Yi, J., Park, J. and Lee, K. (2019). Review of tidal characteristics of Uldolmok Strait and optimal design of blade shape for horizontal axis tidal current turbines. Renewable and Sustainable Energy Reviews, 113, 109273. https://doi.org/10.1016/j.rser.2019.109273
  13. Zhu, F.W., Ding, L., Huang, B., Bao, M. and Liu, J.T. (2020). Blade design and optimization of a horizontal axis turbine. Ocean Engineering, 195, 106652. https://doi.org/10.1016/j.oceaneng.2019.106652