DOI QR코드

DOI QR Code

Review on Electric-field Transparent Conduct Electrodes Based on Nanomaterials

나노 소재 기반의 전기장 투과 전극에 관한 연구동향

  • Lee, Jae Hyung (Division of Materials Science and Engineering, Hanyang University) ;
  • Shin, Jae Hyeok (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Sang Il (Division of Materials Science and Engineering, Hanyang University) ;
  • Park, Won Il (Division of Materials Science and Engineering, Hanyang University)
  • 이재형 (한양대학교 신소재공학과) ;
  • 신재혁 (한양대학교 신소재공학과) ;
  • 이상일 (한양대학교 신소재공학과) ;
  • 박원일 (한양대학교 신소재공학과)
  • Received : 2019.12.02
  • Accepted : 2020.03.05
  • Published : 2020.03.30

Abstract

The 'field-effect' underlies the operation of most conventional electronic devices. However, effective control and implementation of the field-effect in semiconductor devices are limited due to screening of the electric-field by conducting electrodes. Thus far, the electronic devices have necessarily been designed to avoid or minimize the electric-field screening effect. As an alternative approach to this, a new type of conducting electrodes which would be transparent to both visible light and electric-field while being electrically conductive have been developed. Here, we define these electrodes as 'electric-field transparent electrodes' and provide a review on related work. Particular attention is paid to the material selection and design strategies to enhance the electric-field transparency of the electrodes while maintaining good electrical conductivity and optical transparency. We then introduce potential applications of the electric-field transparent electrodes in electronic and optoelectronic devices.

Keywords

References

  1. W. H. Baek, M. Choi, T. S. Yoon, H. H. Lee, and Y. S. Kim, "Use of fluorine-doped tin oxide instead of indium tin oxide in highly efficient air-fabricated inverted polymer solar cells", Appl. Phys. Lett., 96, 133506 (2010). https://doi.org/10.1063/1.3374406
  2. B. J. Kim, "Reliability of Metal Electrode for Flexible Electronics", J. Microelectron. Packag. Soc., 20(4), 1 (2013). https://doi.org/10.6117/kmeps.2013.20.4.001
  3. D. G. Kim, Y. M. Kim, and J. W Kim, "Recent Trends in Development of Ag Nanowire-based Transparent Electrodes for Flexible.Stretchable Electronics", J. Microelectron. Packag. Soc., 22(1), 7 (2015). https://doi.org/10.6117/kmeps.2015.22.1.007
  4. J. Y. Kim, B. G. Kim, Y. K. Lee, J. H. Kim, D. H Woo, S. Y. Kwon, D. G. Lim, and J. H. Park, "Properties of Ga-doped ZnO transparent conducting oxide fabricated on PET substrate by RF magnetron sputtering", J. Microelectron. Packag. Soc., 17(1), 19 (2010).
  5. J. H. Kim, M. W. Chon, and S. H. Choa, "Technology of Flexible Transparent Conductive Electrode for Flexible Electronic Devices", J. Microelectron. Packag. Soc., 21(2), 1 (2014). https://doi.org/10.6117/KMEPS.2014.21.2.001
  6. A. J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G. L. Frey, and N. Tessler, "Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates", Appl. Phys. Lett., 95, 213301 (2009). https://doi.org/10.1063/1.3266855
  7. M. G. Kang, M. S. Kim, J. Kim, and L. J. Guo, "Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes", Adv. Mater., 20, 4408 (2008). https://doi.org/10.1002/adma.200800750
  8. S. Kim, S. Ju, J. H. Back, Y. Xuan, P. D. Ye, M. Shim, D. B. Janes, and S. Mohammadi, "Fully Transparent Thin-Film Transistors Based on Aligned Carbon Nanotube Arrays and Indium Tin Oxide Electrodes", Adv. Mater., 21, 564 (2009). https://doi.org/10.1002/adma.200801032
  9. W. Regan, S. Byrnes, W. Gannett, O. Ergen, O. Vazquez- Mena, F. Wang, and A. Zettl, "Screening-Engineered Field- Effect Solar Cells", Nano Lett., 12, 4300 (2012). https://doi.org/10.1021/nl3020022
  10. S. H. Kim, J. H. Lee, J. S. Park, M. S. Hwang, H. G. Park, K. J. Choi, and W. I. Park, "Performance optimization in gatetunable Schottky junction solar cells with a light transparent and electric-field permeable graphene mesh on n-Si", J. Mater. Chem. C., 5, 3183 (2017). https://doi.org/10.1039/C6TC05502H
  11. C. J. Shih, R. Pfattner, Y. C. Chiu, N. Liu, T. Lei, D. Kong, Y. Kim, H. H. Chou, W. G. Bae, and Z. Bao, "Partially- Screened Field Effect and Selective Carrier Injection at Organic Semiconductor/Graphene Heterointerface", Nano Lett., 15, 7587 (2015). https://doi.org/10.1021/acs.nanolett.5b03378
  12. M. K. Petterson, M. G. Lemaitre, Y. Shen, P. Wadhwa, J. Hou, S. V. Vasilyeva, I. I. Kravchenko, and A. G. Rinzler, "On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell", ACS applied materials & interfaces, 7(38), 21182 (2015). https://doi.org/10.1021/acsami.5b05010
  13. J. S. Yi, D. H. Lee, W. W. Lee, and W. I. Park, "Direct Synthesis of Graphene Meshes and Semipermanent Electrical Doping", J. Phys. Chem., 4, 2099 (2013).
  14. H. Yu, Z. Dong, J. Guo, D. Kim, and F. So, "Vertical Organic Field-Effect Transistors for Integrated Optoelectronic Applications", ACS applied materials & interfaces, 8(16), 10430 (2016). https://doi.org/10.1021/acsami.6b00182
  15. M. A. McCarthy, B. Liu, and A. G. Rinzler, "High Current, Low Voltage Carbon Nanotube Enabled Vertical Organic Field Effect Transistors", Nano Lett., 10, 3467 (2010). https://doi.org/10.1021/nl101589x
  16. K. Lopata, R. Thorpe, S. Pistinner, X. Duan, and D. Neuhauser, "Graphene nanomeshes: Onset of conduction band gaps", Chem. Phys. Lett., 498, 334 (2010). https://doi.org/10.1016/j.cplett.2010.08.086
  17. J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, "Graphene nanomesh", Nat. Nanotechnol., 5, 190 (2010). https://doi.org/10.1038/nnano.2010.8
  18. H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K. E. Byun, P. Kim, I. Yoo, H. J. Chung, and K. Kim, "Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier", Science, 336, 1140 (2012). https://doi.org/10.1126/science.1220527
  19. M. A. McCarthy, B. Liu, R. Jayaraman, S. M. Gilbert, D. Y. Kim, F. So, and A. G. Rinzler, "Reorientation of the High Mobility Plane in Pentacene-Based Carbon Nanotube Enabled Vertical Field Effect Transistors", ACS Nano, 5, 291 (2011). https://doi.org/10.1021/nn102721v
  20. S. Liu, S. Ho, and F. So, "Novel Patterning Method for Silver Nanowire Electrodes for Thermal-Evaporated Organic Light Emitting Diodes", ACS applied materials & interfaces, 8, 9268 (2016). https://doi.org/10.1021/acsami.6b00719
  21. B. Liu, M. A. McCarthy, Y. Yoon, D. Y. Kim, Z. Wu, F. So, P. H. Holloway, J. R. Reynolds, J. Guo, and A. G. Rinzler, "Carbon-Nanotube-Enabled Vertical Field Effect and Light-Emitting Transistors", Adv. Mater., 20, 3605 (2008). https://doi.org/10.1002/adma.200800601
  22. X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, "High Efficiency Graphene Solar Cells by Chemical Doping", Nano Lett., 12, 2745 (2012). https://doi.org/10.1021/nl204414u
  23. P. Wadhwa, B. Liu, M. A. McCarthy, Z. Wu, and A. G. Rinzler, "Electronic Junction Control in a Nanotube-Semiconductor Schottky Junction Solar Cell", Nano Lett., 10, 5001 (2010). https://doi.org/10.1021/nl103128a
  24. P. Wadhwa, G. Seol, M. K. Petterson, J. Guo, and A. G. Rinzler, "Electrolyte-Induced Inversion Layer Schottky Junction Solar Cells", Nano Lett., 11, 2419 (2011). https://doi.org/10.1021/nl200811z
  25. X. Yu, L. Yang, Q. Lv, M. Xu, H. Chen, and D. Yang, "The enhanced efficiency of graphene-silicon solar cells by electric field doping", Nanoscale, 7, 7072 (2015). https://doi.org/10.1039/C4NR06677D
  26. L. Yang, X. Yu, W. Hu, X. Wu, Y. Zhao, and D. Yang, "An 8.68% Efficiency Chemically-Doped-Free Graphene-Silicon Solar Cell Using Silver Nanowires Network Buried Contacts", ACS applied materials & interfaces, 7(7), 4135 (2015). https://doi.org/10.1021/am508211e
  27. K. Kim, T. H. Lee, E. J. G. Santos, P. S. Jo, A. Salleo, Y. Nishi, and Z. Bao, "Structural and Electrical Investigation of C60-Graphene Vertical Heterostructures", ACS Nano, 9, 5922 (2015). https://doi.org/10.1021/acsnano.5b00581
  28. Y. Liu, J. Guo, E. Zhu, P. Wang, V. Gambin, Y. Huang, and X. Duan, "Maximizing the Current Output in Self-Aligned Graphene-InAs-Metal Vertical Transistors", ACS Nano, 13, 847 (2019). https://doi.org/10.1021/acsnano.8b08617
  29. Y. Yang, X. Yang, X. Zou, S. Wu, D. Wan, A. Cao, L. Liao, Q. Yuan, and X. Duan, "Ultrafine Graphene Nanomesh with Large On/Off Ratio for High-Performance Flexible Biosensors", Adv. Funct. Mater., 27, 1604096 (2017). https://doi.org/10.1002/adfm.201604096
  30. Y. Song, X. Li, C. Mackin, X. Zhang, W. Fang, T. Palacios, H. Zhu, and J. Kong, "Role of Interfacial Oxide in High-Efficiency Graphene-Silicon Schottky Barrier Solar Cells", Nano Lett., 15, 2104 (2015). https://doi.org/10.1021/nl505011f
  31. O. Vazquez-Mena, J. P. Bosco, O. Ergen, H. I. Rasool, A. Fathalizadeh, M. Tosun, M. Crommie, A. Javey, H. A. Atwater, and A. Zettl, "Performance Enhancement of a Graphene- Zinc Phosphide Solar Cell Using the Electric Field-Effect", Nano Lett., 14, 4280 (2014). https://doi.org/10.1021/nl500925n