DOI QR코드

DOI QR Code

Systematic Review on the Type and Method of Convergence Study of Inertial Measurement Unit

관성 측정 장치의 융합연구 형태와 방법에 관한 체계적 고찰

  • Lee, Hey-Sig (Dept. of Occupational Therapy, Graduate School of Yonsei University) ;
  • Park, Hae-Yean (Dept. of Occupational Therapy, College of Health Science, Yonsei University)
  • 이혜식 (연세대학교 일반대학원 작업치료학과) ;
  • 박혜연 (연세대학교 보건과학대학 작업치료학과)
  • Received : 2019.12.23
  • Accepted : 2020.03.20
  • Published : 2020.03.28

Abstract

The purpose of this study is to identify trends in the type and method of Inertial Measurement Unit (IMU) by investigating studies on the type and method of convergence study of the IMU by systematic review. The study was conducted using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. 23 studies that meet the selection criteria were selected from 630 studies identified by three databases. As a result of this study, showed that various research using IMU was being conducted around the world, and the type of IMU was strap, full body suit, belt, wrist watch, shoes and glove. Among them, the number of strap-type IMUs was the largest at 11. The IMU's strengths were simplicity, real-time data collection and ease of application, which were used as measurement methods such as task, walking, and range of joint. The result of this study is expected to be used as basic data for experts in the medical and rehabilitation fields that conduct IMU research.

본 연구의 목적은 관성 측정 장치(Inertial Measurement Unit, IMU)의 융합연구 형태와 방법에 대한 연구를 체계적 문헌고찰 방법으로 분석하여 IMU의 형태와 방법에 대한 경향을 파악하고자 한다. 연구수행은 PRISMA(Preferred Reporting Items for Systematic Reviews and Meta-Analyses)가이드라인을 이용하여 수행되었다. 3개의 데이터베이스에서 검색된 630편 중 최종적으로 선정기준에 부합하는 23편을 선정하였다. 본 연구결과 전 세계적으로 IMU를 사용한 다양한 연구를 진행하고 있음을 알 수 있었고, IMU의 형태는 스트랩, 전신 슈트, 벨트, 손목시계, 신발, 장갑이 있었다. 이 중, 스트랩 형태의 IMU가 11편으로 가장 많았다. IMU의 장점인 간소화와 실시간 데이터 수집, 적용의 쉬움으로 작업 활동, 보행, 관절 가동 범위 등의 측정 방법으로 사용되었다. 본 연구의 결과는 IMU의 연구를 진행하는 의료 및 재활 분야의 전문가들에게 기초 자료로 활용될 수 있으리라 기대된다.

Keywords

References

  1. Y. G. Kim. (2007). A Search on the Necessity of Occupational Therapy in Community Based Rehabilitation in Public Health Centers. The Journal of Korean Society of Occupational Therapy, 15(3), 13-24.
  2. Y. Koumpouros. (2016). A systematic review on existing measures for the subjective assessment of rehabilitation and assistive robot devices. Journal of healthcare engineering, 2016. DOI : 10.1155/2016/1048964
  3. Z. Zhang, Q. Fang & X. Gu. (2015). Objective assessment of upper-limb mobility for poststroke rehabilitation. IEEE Transactions on Biomedical Engineering, 63(4), 859-868. DOI : 10.1109/TBME.2015.2477095
  4. M. Ye, C. Yang, V. Stankovic, L. Stankovic & A. Kerr. (2016). A depth camera motion analysis framework for tele-rehabilitation: Motion capture and person-centric kinematics analysis. IEEE Journal of Selected Topics in Signal Processing, 10(5), 877-887. DOI : 10.1109/JSTSP.2016.2559446
  5. U. C. Ugbolue, E. Papi, K. T. Kaliarntas, A. Kerr, L. Earl, V. M. Pomeroy & P. J. Rowe. (2013). The evaluation of an inexpensive, 2D, video based gait assessment system for clinical use. Gait & posture, 38(3), 483-489. DOI : 10.1016/j.gaitpost.2013.01.018
  6. T. Seel, J. Raisch & T. Schauer. (2014). IMU-based joint angle measurement for gait analysis. Sensors, 14(4), 6891-6909. DOI : 10.3390/s140406891
  7. H. H. Kim, J. K. Kim, J. H. Seo, Y. J. Park & Y. B. Park. (2011). Feasibility on Evaluation of Movement System Impairment Syndromes by MEMS-IMU. The Journal Of The Korea Institute Of Oriental Medical Diagnostics, 15(3), 261-27.
  8. A. Gil-Agudo et al. (2013). A novel motion tracking system for evaluation of functional rehabilitation of the upper limbs. Neural regeneration research, 8(19), 1773. DOI : 10.3969/j.issn.1673-5374.2013.19.005
  9. C. Cifuentes, A. Braidot, L. Rodriguez, M. Frisoli, A. Santiago & A. Frizera. (2012, June). Development of a wearable ZigBee sensor system for upper limb rehabilitation robotics. In 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (pp. 1989-1994). IEEE. DOI : 10.1109/BioRob.2012.6290926
  10. J. Bae & M. Tomizuka. (2013). A tele-monitoring system for gait rehabilitation with an inertial measurement unit and a shoe-type ground reaction force sensor. Mechatronics, 23(6), 646-651. DOI : 10.1016/j.mechatronics.2013.06.007
  11. F. Cavallo, A. M. Sabatini & V. Genovese. (2005, August). A step toward GPS/INS personal navigation systems: real-time assessment of gait by foot inertial sensing. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1187-1191). IEEE. DOI : 10.1109/IROS.2005.1544967
  12. D. Rodriguez-Martin, C. et al. (2017). A waist-worn inertial measurement unit for long-term monitoring of Parkinson's disease patients. Sensors, 17(4), 827. DOI : 10.3390/s17040827
  13. A. J. Solomon, J. V. Jacobs, K. V. Lomond & S. M. Henry. (2015). Detection of postural sway abnormalities by wireless inertial sensors in minimally disabled patients with multiple sclerosis: a case- control study. Journal of neuroengineering and rehabilitation, 12(1), 74. DOI : 10.1186/s12984-015-0066-9
  14. T. H. Kim. C. W. Ro & J. W. Yoon. (2016). Development of Smart Stick Using Motion Sensing and GPS for Elderly Users' Safety. Journal of the Korea Convergence Society, 7(4), 45-50. DOI : 10.15207/JKCS.2016.7.4.045
  15. D. Moher, A. Liberati, J. Tetzlaff & D. G. Altman. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Journal of Clinical Epidemiology, 62(10), 1006-1012 DOI : 10.1371/journal.pmed.1000097
  16. M. Arbesman, J. Scheer & D. Lieberman. (2008). Using AOTA's critically appraised topic(CAT) and critically appraised paper(CAP) series to link evidence to practice. Occupational Therapy Practice, 13(5), 18-22.
  17. A. Anwary, H. Yu & M. Vassallo. (2018). An automatic gait feature extraction method for identifying gait asymmetry using wearable sensors. Sensors, 18(2), 676. DOI : 10.3390/s18020676
  18. K. L. Armstrong, L. M. Lombardo, K. M. Foglyano, M. L. Audu & R. J. Triolo. (2018). Automatic application of neural stimulation during wheelchair propulsion after SCI enhances recovery of upright sitting from destabilizing events. Journal of neuroengineering and rehabilitation, 15(1), 17. DOI : 10.1186/s12984-018-0362-2
  19. R. Barrois, T. Gregory, L. Oudre, T. Moreau, C. Truong, A. A. Pulini, ... & A. Yelnik. (2016). An automated recording method in clinical consultation to rate the limp in lower limb osteoarthritis. PloS one, 11(10), e0164975. DOI : 10.1371/journal.pone.0164975
  20. R. P. M. Barrois, D. Ricard, L. Oudre, L. Tlili, C. Provost, A. Vienne, ... & A. P. Yelnik. (2017). Observational study of 180 Turning strategies Using inertial Measurement Units and Fall risk in Poststroke hemiparetic Patients. Frontiers in neurology, 8, 194. DOI : 10.3389/fneur.2017.00194
  21. P. Hausamann, M. Daumer, P. MacNeilage & S. Glasauer. (2019). Ecological Momentary Assessment of Head Motion: Towards Normative Data of Head Stabilization. Frontiers in human neuroscience, 13, 179. DOI : 10.3389/fnhum.2019.00179
  22. R. Kianifar, A. Lee, S. Raina & D. Kulic. (2017). Automated assessment of dynamic knee valgus and risk of knee injury during the single leg squat. IEEE journal of translational engineering in health and medicine, 5, 1-13. DOI : 10.1109/JTEHM.2017.2736559
  23. N. Kitagawa & N. Ogihara. (2016). Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot. Gait & posture, 45, 110-114. DOI : 10.1016/j.gaitpost.2016.01.014
  24. D. Luksys, G. Jonaitis & J. Griskevicius. (2018). Quantitative analysis of parkinsonian tremor in a clinical setting using inertial measurement units. Parkinson's Disease, 2018. DOI : 10.1155/2018/1683831
  25. H. S. Nam, W. H. Lee, H. G. Seo, Y. J. Kim, M. S. Bang & S. Kim. (2019). Inertial Measurement Unit Based Upper Extremity Motion Characterization for Action Research Arm Test and Activities of Daily Living. Sensors, 19(8), 1782. DOI : 10.3390/s19081782
  26. B. J. Stetter, S. Ringhof, F. C. Krafft, S. Sell & T. Stein. (2019). Estimation of Knee Joint Forces in Sport Movements Using Wearable Sensors and Machine Learning. Sensors, 19(17), 3690. DOI : 10.3390/s19173690
  27. F. Wittmann, J. P. Held, O. Lambercy, M. L. Starkey, A. Curt, R. Hover, ... & R. R. Gonzenbach. (2016). Self-directed arm therapy at home after stroke with a sensor-based virtual reality training system. Journal of neuroengineering and rehabilitation, 13(1), 75. DOI : 10.1186/s12984-016-0182-1
  28. M. Delrobaei, S. Tran, G. Gilmore, K. McIsaac & M. Jog. (2016). Characterization of multi-joint upper limb movements in a single task to assess bradykinesia. Journal of the neurological sciences, 368, 337-342. DOI : 10.1016/j.jns.2016.07.056
  29. M. Delrobaei, S. Memar, M. Pieterman, T. W. Stratton, K. McIsaac & M. Jog. (2018). Towards remote monitoring of Parkinson's disease tremor using wearable motion capture systems. Journal of the neurological sciences, 384, 38-45. DOI : 10.1016/j.jns.2017.11.004
  30. S. Memar, M. Delrobaei, M. Pieterman, K. McIsaac & M. Jog. (2018). Quantification of whole-body bradykinesia in Parkinson's disease participants using multiple inertial sensors. Journal of the neurological sciences, 387, 157-165. DOI : 10.1016/j.jns.2018.02.001
  31. H. Nguyen, K. Lebel, P. Boissy, S. Bogard, E. Goubault & C. Duval. (2017). Auto detection and segmentation of daily living activities during a Timed Up and Go task in people with Parkinson's disease using multiple inertial sensors. Journal of neuroengineering and rehabilitation, 14(1), 26. DOI : 10.1186/s12984-017-0241-2
  32. S. J. Ozinga, S. M. Linder & J. L. Alberts. (2017). Use of mobile device accelerometry to enhance evaluation of postural instability in Parkinson disease. Archives of physical medicine and rehabilitation, 98(4), 649-658. DOI : 10.1016/j.apmr.2016.08.479
  33. J. Camps, A. Sama, M. Martin, D. Rodriguez-Martin, C. Perez-Lopez, J. M. M. Arostegui, ... & A. Prats. (2018). Deep learning for freezing of gait detection in Parkinson's disease patients in their homes using a waist-worn inertial measurement unit. Knowledge-Based Systems, 139, 119-131. DOI : 10.1016/j.knosys.2017.10.017
  34. M. Pau, B. Leban, G. Collu & G. M. Migliaccio. (2014). Effect of light and vigorous physical activity on balance and gait of older adults. Archives of gerontology and geriatrics, 59(3), 568-573. DOI : 10.1016/j.archger.2014.07.008
  35. F. Sgro, P. Mango, S. Pignato, R. Schembri, D. Licari & M. Lipoma. (2017). Assessing Standing Long Jump Developmental Levels Using an Inertial Measurement Unit. Perceptual and motor skills, 124(1), 21-38. DOI : 10.1177/0031512516682649
  36. S. Stuart, L. Parrington, D. N. Martini, N. Kreter, J. C. Chesnutt, P. C. Fino & L. A. King. (2019). Analysis of free-living mobility in people with mild traumatic brain injury and healthy controls: quality over quantity. Journal of neurotrauma, 37(1), 139-145 DOI : 10.1089/neu.2019.6450
  37. K. Leuenberger, R. Gonzenbach, S. Wachter, A. Luft & R. Gassert. (2017). A method to qualitatively assess arm use in stroke survivors in the home environment. Medical & biological engineering & computing, 55(1), 141-150. DOI : 10.1007/s11517-016-1496-7
  38. S. H. Han, C. O. Kim, K. J. Kim, J. Jeon, H. Chang, E. S. Kim & H. Park. (2019). Quantitative analysis of the bilateral coordination and gait asymmetry using inertial measurement unit-based gait analysis. PloS one, 14(10) . DOI : 10.1371/journal.pone.0222913
  39. H. Dai, H. Lin & T. C. Lueth. (2015). Quantitative assessment of parkinsonian bradykinesia based on an inertial measurement unit. Biomedical engineering online, 14(1), 68. DOI : 10.1186/s12938-015-0067-8