References
- Y. G. Kim. (2007). A Search on the Necessity of Occupational Therapy in Community Based Rehabilitation in Public Health Centers. The Journal of Korean Society of Occupational Therapy, 15(3), 13-24.
- Y. Koumpouros. (2016). A systematic review on existing measures for the subjective assessment of rehabilitation and assistive robot devices. Journal of healthcare engineering, 2016. DOI : 10.1155/2016/1048964
- Z. Zhang, Q. Fang & X. Gu. (2015). Objective assessment of upper-limb mobility for poststroke rehabilitation. IEEE Transactions on Biomedical Engineering, 63(4), 859-868. DOI : 10.1109/TBME.2015.2477095
- M. Ye, C. Yang, V. Stankovic, L. Stankovic & A. Kerr. (2016). A depth camera motion analysis framework for tele-rehabilitation: Motion capture and person-centric kinematics analysis. IEEE Journal of Selected Topics in Signal Processing, 10(5), 877-887. DOI : 10.1109/JSTSP.2016.2559446
- U. C. Ugbolue, E. Papi, K. T. Kaliarntas, A. Kerr, L. Earl, V. M. Pomeroy & P. J. Rowe. (2013). The evaluation of an inexpensive, 2D, video based gait assessment system for clinical use. Gait & posture, 38(3), 483-489. DOI : 10.1016/j.gaitpost.2013.01.018
- T. Seel, J. Raisch & T. Schauer. (2014). IMU-based joint angle measurement for gait analysis. Sensors, 14(4), 6891-6909. DOI : 10.3390/s140406891
- H. H. Kim, J. K. Kim, J. H. Seo, Y. J. Park & Y. B. Park. (2011). Feasibility on Evaluation of Movement System Impairment Syndromes by MEMS-IMU. The Journal Of The Korea Institute Of Oriental Medical Diagnostics, 15(3), 261-27.
- A. Gil-Agudo et al. (2013). A novel motion tracking system for evaluation of functional rehabilitation of the upper limbs. Neural regeneration research, 8(19), 1773. DOI : 10.3969/j.issn.1673-5374.2013.19.005
- C. Cifuentes, A. Braidot, L. Rodriguez, M. Frisoli, A. Santiago & A. Frizera. (2012, June). Development of a wearable ZigBee sensor system for upper limb rehabilitation robotics. In 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (pp. 1989-1994). IEEE. DOI : 10.1109/BioRob.2012.6290926
- J. Bae & M. Tomizuka. (2013). A tele-monitoring system for gait rehabilitation with an inertial measurement unit and a shoe-type ground reaction force sensor. Mechatronics, 23(6), 646-651. DOI : 10.1016/j.mechatronics.2013.06.007
- F. Cavallo, A. M. Sabatini & V. Genovese. (2005, August). A step toward GPS/INS personal navigation systems: real-time assessment of gait by foot inertial sensing. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1187-1191). IEEE. DOI : 10.1109/IROS.2005.1544967
- D. Rodriguez-Martin, C. et al. (2017). A waist-worn inertial measurement unit for long-term monitoring of Parkinson's disease patients. Sensors, 17(4), 827. DOI : 10.3390/s17040827
- A. J. Solomon, J. V. Jacobs, K. V. Lomond & S. M. Henry. (2015). Detection of postural sway abnormalities by wireless inertial sensors in minimally disabled patients with multiple sclerosis: a case- control study. Journal of neuroengineering and rehabilitation, 12(1), 74. DOI : 10.1186/s12984-015-0066-9
- T. H. Kim. C. W. Ro & J. W. Yoon. (2016). Development of Smart Stick Using Motion Sensing and GPS for Elderly Users' Safety. Journal of the Korea Convergence Society, 7(4), 45-50. DOI : 10.15207/JKCS.2016.7.4.045
- D. Moher, A. Liberati, J. Tetzlaff & D. G. Altman. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Journal of Clinical Epidemiology, 62(10), 1006-1012 DOI : 10.1371/journal.pmed.1000097
- M. Arbesman, J. Scheer & D. Lieberman. (2008). Using AOTA's critically appraised topic(CAT) and critically appraised paper(CAP) series to link evidence to practice. Occupational Therapy Practice, 13(5), 18-22.
- A. Anwary, H. Yu & M. Vassallo. (2018). An automatic gait feature extraction method for identifying gait asymmetry using wearable sensors. Sensors, 18(2), 676. DOI : 10.3390/s18020676
- K. L. Armstrong, L. M. Lombardo, K. M. Foglyano, M. L. Audu & R. J. Triolo. (2018). Automatic application of neural stimulation during wheelchair propulsion after SCI enhances recovery of upright sitting from destabilizing events. Journal of neuroengineering and rehabilitation, 15(1), 17. DOI : 10.1186/s12984-018-0362-2
- R. Barrois, T. Gregory, L. Oudre, T. Moreau, C. Truong, A. A. Pulini, ... & A. Yelnik. (2016). An automated recording method in clinical consultation to rate the limp in lower limb osteoarthritis. PloS one, 11(10), e0164975. DOI : 10.1371/journal.pone.0164975
- R. P. M. Barrois, D. Ricard, L. Oudre, L. Tlili, C. Provost, A. Vienne, ... & A. P. Yelnik. (2017). Observational study of 180 Turning strategies Using inertial Measurement Units and Fall risk in Poststroke hemiparetic Patients. Frontiers in neurology, 8, 194. DOI : 10.3389/fneur.2017.00194
- P. Hausamann, M. Daumer, P. MacNeilage & S. Glasauer. (2019). Ecological Momentary Assessment of Head Motion: Towards Normative Data of Head Stabilization. Frontiers in human neuroscience, 13, 179. DOI : 10.3389/fnhum.2019.00179
- R. Kianifar, A. Lee, S. Raina & D. Kulic. (2017). Automated assessment of dynamic knee valgus and risk of knee injury during the single leg squat. IEEE journal of translational engineering in health and medicine, 5, 1-13. DOI : 10.1109/JTEHM.2017.2736559
- N. Kitagawa & N. Ogihara. (2016). Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot. Gait & posture, 45, 110-114. DOI : 10.1016/j.gaitpost.2016.01.014
- D. Luksys, G. Jonaitis & J. Griskevicius. (2018). Quantitative analysis of parkinsonian tremor in a clinical setting using inertial measurement units. Parkinson's Disease, 2018. DOI : 10.1155/2018/1683831
- H. S. Nam, W. H. Lee, H. G. Seo, Y. J. Kim, M. S. Bang & S. Kim. (2019). Inertial Measurement Unit Based Upper Extremity Motion Characterization for Action Research Arm Test and Activities of Daily Living. Sensors, 19(8), 1782. DOI : 10.3390/s19081782
- B. J. Stetter, S. Ringhof, F. C. Krafft, S. Sell & T. Stein. (2019). Estimation of Knee Joint Forces in Sport Movements Using Wearable Sensors and Machine Learning. Sensors, 19(17), 3690. DOI : 10.3390/s19173690
- F. Wittmann, J. P. Held, O. Lambercy, M. L. Starkey, A. Curt, R. Hover, ... & R. R. Gonzenbach. (2016). Self-directed arm therapy at home after stroke with a sensor-based virtual reality training system. Journal of neuroengineering and rehabilitation, 13(1), 75. DOI : 10.1186/s12984-016-0182-1
- M. Delrobaei, S. Tran, G. Gilmore, K. McIsaac & M. Jog. (2016). Characterization of multi-joint upper limb movements in a single task to assess bradykinesia. Journal of the neurological sciences, 368, 337-342. DOI : 10.1016/j.jns.2016.07.056
- M. Delrobaei, S. Memar, M. Pieterman, T. W. Stratton, K. McIsaac & M. Jog. (2018). Towards remote monitoring of Parkinson's disease tremor using wearable motion capture systems. Journal of the neurological sciences, 384, 38-45. DOI : 10.1016/j.jns.2017.11.004
- S. Memar, M. Delrobaei, M. Pieterman, K. McIsaac & M. Jog. (2018). Quantification of whole-body bradykinesia in Parkinson's disease participants using multiple inertial sensors. Journal of the neurological sciences, 387, 157-165. DOI : 10.1016/j.jns.2018.02.001
- H. Nguyen, K. Lebel, P. Boissy, S. Bogard, E. Goubault & C. Duval. (2017). Auto detection and segmentation of daily living activities during a Timed Up and Go task in people with Parkinson's disease using multiple inertial sensors. Journal of neuroengineering and rehabilitation, 14(1), 26. DOI : 10.1186/s12984-017-0241-2
- S. J. Ozinga, S. M. Linder & J. L. Alberts. (2017). Use of mobile device accelerometry to enhance evaluation of postural instability in Parkinson disease. Archives of physical medicine and rehabilitation, 98(4), 649-658. DOI : 10.1016/j.apmr.2016.08.479
- J. Camps, A. Sama, M. Martin, D. Rodriguez-Martin, C. Perez-Lopez, J. M. M. Arostegui, ... & A. Prats. (2018). Deep learning for freezing of gait detection in Parkinson's disease patients in their homes using a waist-worn inertial measurement unit. Knowledge-Based Systems, 139, 119-131. DOI : 10.1016/j.knosys.2017.10.017
- M. Pau, B. Leban, G. Collu & G. M. Migliaccio. (2014). Effect of light and vigorous physical activity on balance and gait of older adults. Archives of gerontology and geriatrics, 59(3), 568-573. DOI : 10.1016/j.archger.2014.07.008
- F. Sgro, P. Mango, S. Pignato, R. Schembri, D. Licari & M. Lipoma. (2017). Assessing Standing Long Jump Developmental Levels Using an Inertial Measurement Unit. Perceptual and motor skills, 124(1), 21-38. DOI : 10.1177/0031512516682649
- S. Stuart, L. Parrington, D. N. Martini, N. Kreter, J. C. Chesnutt, P. C. Fino & L. A. King. (2019). Analysis of free-living mobility in people with mild traumatic brain injury and healthy controls: quality over quantity. Journal of neurotrauma, 37(1), 139-145 DOI : 10.1089/neu.2019.6450
- K. Leuenberger, R. Gonzenbach, S. Wachter, A. Luft & R. Gassert. (2017). A method to qualitatively assess arm use in stroke survivors in the home environment. Medical & biological engineering & computing, 55(1), 141-150. DOI : 10.1007/s11517-016-1496-7
- S. H. Han, C. O. Kim, K. J. Kim, J. Jeon, H. Chang, E. S. Kim & H. Park. (2019). Quantitative analysis of the bilateral coordination and gait asymmetry using inertial measurement unit-based gait analysis. PloS one, 14(10) . DOI : 10.1371/journal.pone.0222913
- H. Dai, H. Lin & T. C. Lueth. (2015). Quantitative assessment of parkinsonian bradykinesia based on an inertial measurement unit. Biomedical engineering online, 14(1), 68. DOI : 10.1186/s12938-015-0067-8