Browse > Article
http://dx.doi.org/10.15207/JKCS.2020.11.3.119

Systematic Review on the Type and Method of Convergence Study of Inertial Measurement Unit  

Lee, Hey-Sig (Dept. of Occupational Therapy, Graduate School of Yonsei University)
Park, Hae-Yean (Dept. of Occupational Therapy, College of Health Science, Yonsei University)
Publication Information
Journal of the Korea Convergence Society / v.11, no.3, 2020 , pp. 119-126 More about this Journal
Abstract
The purpose of this study is to identify trends in the type and method of Inertial Measurement Unit (IMU) by investigating studies on the type and method of convergence study of the IMU by systematic review. The study was conducted using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. 23 studies that meet the selection criteria were selected from 630 studies identified by three databases. As a result of this study, showed that various research using IMU was being conducted around the world, and the type of IMU was strap, full body suit, belt, wrist watch, shoes and glove. Among them, the number of strap-type IMUs was the largest at 11. The IMU's strengths were simplicity, real-time data collection and ease of application, which were used as measurement methods such as task, walking, and range of joint. The result of this study is expected to be used as basic data for experts in the medical and rehabilitation fields that conduct IMU research.
Keywords
Trend; IMU; Sensor; Convergence Study; Systematic review;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. Nguyen, K. Lebel, P. Boissy, S. Bogard, E. Goubault & C. Duval. (2017). Auto detection and segmentation of daily living activities during a Timed Up and Go task in people with Parkinson's disease using multiple inertial sensors. Journal of neuroengineering and rehabilitation, 14(1), 26. DOI : 10.1186/s12984-017-0241-2   DOI
2 S. J. Ozinga, S. M. Linder & J. L. Alberts. (2017). Use of mobile device accelerometry to enhance evaluation of postural instability in Parkinson disease. Archives of physical medicine and rehabilitation, 98(4), 649-658. DOI : 10.1016/j.apmr.2016.08.479   DOI
3 J. Camps, A. Sama, M. Martin, D. Rodriguez-Martin, C. Perez-Lopez, J. M. M. Arostegui, ... & A. Prats. (2018). Deep learning for freezing of gait detection in Parkinson's disease patients in their homes using a waist-worn inertial measurement unit. Knowledge-Based Systems, 139, 119-131. DOI : 10.1016/j.knosys.2017.10.017   DOI
4 M. Pau, B. Leban, G. Collu & G. M. Migliaccio. (2014). Effect of light and vigorous physical activity on balance and gait of older adults. Archives of gerontology and geriatrics, 59(3), 568-573. DOI : 10.1016/j.archger.2014.07.008   DOI
5 F. Sgro, P. Mango, S. Pignato, R. Schembri, D. Licari & M. Lipoma. (2017). Assessing Standing Long Jump Developmental Levels Using an Inertial Measurement Unit. Perceptual and motor skills, 124(1), 21-38. DOI : 10.1177/0031512516682649   DOI
6 S. Stuart, L. Parrington, D. N. Martini, N. Kreter, J. C. Chesnutt, P. C. Fino & L. A. King. (2019). Analysis of free-living mobility in people with mild traumatic brain injury and healthy controls: quality over quantity. Journal of neurotrauma, 37(1), 139-145 DOI : 10.1089/neu.2019.6450   DOI
7 K. Leuenberger, R. Gonzenbach, S. Wachter, A. Luft & R. Gassert. (2017). A method to qualitatively assess arm use in stroke survivors in the home environment. Medical & biological engineering & computing, 55(1), 141-150. DOI : 10.1007/s11517-016-1496-7   DOI
8 S. H. Han, C. O. Kim, K. J. Kim, J. Jeon, H. Chang, E. S. Kim & H. Park. (2019). Quantitative analysis of the bilateral coordination and gait asymmetry using inertial measurement unit-based gait analysis. PloS one, 14(10) . DOI : 10.1371/journal.pone.0222913
9 H. Dai, H. Lin & T. C. Lueth. (2015). Quantitative assessment of parkinsonian bradykinesia based on an inertial measurement unit. Biomedical engineering online, 14(1), 68. DOI : 10.1186/s12938-015-0067-8   DOI
10 M. Arbesman, J. Scheer & D. Lieberman. (2008). Using AOTA's critically appraised topic(CAT) and critically appraised paper(CAP) series to link evidence to practice. Occupational Therapy Practice, 13(5), 18-22.
11 A. Anwary, H. Yu & M. Vassallo. (2018). An automatic gait feature extraction method for identifying gait asymmetry using wearable sensors. Sensors, 18(2), 676. DOI : 10.3390/s18020676   DOI
12 K. L. Armstrong, L. M. Lombardo, K. M. Foglyano, M. L. Audu & R. J. Triolo. (2018). Automatic application of neural stimulation during wheelchair propulsion after SCI enhances recovery of upright sitting from destabilizing events. Journal of neuroengineering and rehabilitation, 15(1), 17. DOI : 10.1186/s12984-018-0362-2   DOI
13 R. Barrois, T. Gregory, L. Oudre, T. Moreau, C. Truong, A. A. Pulini, ... & A. Yelnik. (2016). An automated recording method in clinical consultation to rate the limp in lower limb osteoarthritis. PloS one, 11(10), e0164975. DOI : 10.1371/journal.pone.0164975   DOI
14 N. Kitagawa & N. Ogihara. (2016). Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot. Gait & posture, 45, 110-114. DOI : 10.1016/j.gaitpost.2016.01.014   DOI
15 R. P. M. Barrois, D. Ricard, L. Oudre, L. Tlili, C. Provost, A. Vienne, ... & A. P. Yelnik. (2017). Observational study of 180 Turning strategies Using inertial Measurement Units and Fall risk in Poststroke hemiparetic Patients. Frontiers in neurology, 8, 194. DOI : 10.3389/fneur.2017.00194   DOI
16 P. Hausamann, M. Daumer, P. MacNeilage & S. Glasauer. (2019). Ecological Momentary Assessment of Head Motion: Towards Normative Data of Head Stabilization. Frontiers in human neuroscience, 13, 179. DOI : 10.3389/fnhum.2019.00179
17 R. Kianifar, A. Lee, S. Raina & D. Kulic. (2017). Automated assessment of dynamic knee valgus and risk of knee injury during the single leg squat. IEEE journal of translational engineering in health and medicine, 5, 1-13. DOI : 10.1109/JTEHM.2017.2736559
18 J. Bae & M. Tomizuka. (2013). A tele-monitoring system for gait rehabilitation with an inertial measurement unit and a shoe-type ground reaction force sensor. Mechatronics, 23(6), 646-651. DOI : 10.1016/j.mechatronics.2013.06.007   DOI
19 A. Gil-Agudo et al. (2013). A novel motion tracking system for evaluation of functional rehabilitation of the upper limbs. Neural regeneration research, 8(19), 1773. DOI : 10.3969/j.issn.1673-5374.2013.19.005
20 C. Cifuentes, A. Braidot, L. Rodriguez, M. Frisoli, A. Santiago & A. Frizera. (2012, June). Development of a wearable ZigBee sensor system for upper limb rehabilitation robotics. In 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (pp. 1989-1994). IEEE. DOI : 10.1109/BioRob.2012.6290926
21 T. H. Kim. C. W. Ro & J. W. Yoon. (2016). Development of Smart Stick Using Motion Sensing and GPS for Elderly Users' Safety. Journal of the Korea Convergence Society, 7(4), 45-50. DOI : 10.15207/JKCS.2016.7.4.045   DOI
22 F. Cavallo, A. M. Sabatini & V. Genovese. (2005, August). A step toward GPS/INS personal navigation systems: real-time assessment of gait by foot inertial sensing. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1187-1191). IEEE. DOI : 10.1109/IROS.2005.1544967
23 D. Rodriguez-Martin, C. et al. (2017). A waist-worn inertial measurement unit for long-term monitoring of Parkinson's disease patients. Sensors, 17(4), 827. DOI : 10.3390/s17040827   DOI
24 A. J. Solomon, J. V. Jacobs, K. V. Lomond & S. M. Henry. (2015). Detection of postural sway abnormalities by wireless inertial sensors in minimally disabled patients with multiple sclerosis: a case- control study. Journal of neuroengineering and rehabilitation, 12(1), 74. DOI : 10.1186/s12984-015-0066-9   DOI
25 D. Moher, A. Liberati, J. Tetzlaff & D. G. Altman. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Journal of Clinical Epidemiology, 62(10), 1006-1012 DOI : 10.1371/journal.pmed.1000097   DOI
26 F. Wittmann, J. P. Held, O. Lambercy, M. L. Starkey, A. Curt, R. Hover, ... & R. R. Gonzenbach. (2016). Self-directed arm therapy at home after stroke with a sensor-based virtual reality training system. Journal of neuroengineering and rehabilitation, 13(1), 75. DOI : 10.1186/s12984-016-0182-1   DOI
27 D. Luksys, G. Jonaitis & J. Griskevicius. (2018). Quantitative analysis of parkinsonian tremor in a clinical setting using inertial measurement units. Parkinson's Disease, 2018. DOI : 10.1155/2018/1683831
28 Y. G. Kim. (2007). A Search on the Necessity of Occupational Therapy in Community Based Rehabilitation in Public Health Centers. The Journal of Korean Society of Occupational Therapy, 15(3), 13-24.
29 H. S. Nam, W. H. Lee, H. G. Seo, Y. J. Kim, M. S. Bang & S. Kim. (2019). Inertial Measurement Unit Based Upper Extremity Motion Characterization for Action Research Arm Test and Activities of Daily Living. Sensors, 19(8), 1782. DOI : 10.3390/s19081782   DOI
30 B. J. Stetter, S. Ringhof, F. C. Krafft, S. Sell & T. Stein. (2019). Estimation of Knee Joint Forces in Sport Movements Using Wearable Sensors and Machine Learning. Sensors, 19(17), 3690. DOI : 10.3390/s19173690
31 M. Delrobaei, S. Tran, G. Gilmore, K. McIsaac & M. Jog. (2016). Characterization of multi-joint upper limb movements in a single task to assess bradykinesia. Journal of the neurological sciences, 368, 337-342. DOI : 10.1016/j.jns.2016.07.056   DOI
32 M. Delrobaei, S. Memar, M. Pieterman, T. W. Stratton, K. McIsaac & M. Jog. (2018). Towards remote monitoring of Parkinson's disease tremor using wearable motion capture systems. Journal of the neurological sciences, 384, 38-45. DOI : 10.1016/j.jns.2017.11.004   DOI
33 S. Memar, M. Delrobaei, M. Pieterman, K. McIsaac & M. Jog. (2018). Quantification of whole-body bradykinesia in Parkinson's disease participants using multiple inertial sensors. Journal of the neurological sciences, 387, 157-165. DOI : 10.1016/j.jns.2018.02.001   DOI
34 U. C. Ugbolue, E. Papi, K. T. Kaliarntas, A. Kerr, L. Earl, V. M. Pomeroy & P. J. Rowe. (2013). The evaluation of an inexpensive, 2D, video based gait assessment system for clinical use. Gait & posture, 38(3), 483-489. DOI : 10.1016/j.gaitpost.2013.01.018   DOI
35 Y. Koumpouros. (2016). A systematic review on existing measures for the subjective assessment of rehabilitation and assistive robot devices. Journal of healthcare engineering, 2016. DOI : 10.1155/2016/1048964
36 Z. Zhang, Q. Fang & X. Gu. (2015). Objective assessment of upper-limb mobility for poststroke rehabilitation. IEEE Transactions on Biomedical Engineering, 63(4), 859-868. DOI : 10.1109/TBME.2015.2477095   DOI
37 M. Ye, C. Yang, V. Stankovic, L. Stankovic & A. Kerr. (2016). A depth camera motion analysis framework for tele-rehabilitation: Motion capture and person-centric kinematics analysis. IEEE Journal of Selected Topics in Signal Processing, 10(5), 877-887. DOI : 10.1109/JSTSP.2016.2559446   DOI
38 T. Seel, J. Raisch & T. Schauer. (2014). IMU-based joint angle measurement for gait analysis. Sensors, 14(4), 6891-6909. DOI : 10.3390/s140406891   DOI
39 H. H. Kim, J. K. Kim, J. H. Seo, Y. J. Park & Y. B. Park. (2011). Feasibility on Evaluation of Movement System Impairment Syndromes by MEMS-IMU. The Journal Of The Korea Institute Of Oriental Medical Diagnostics, 15(3), 261-27.