DOI QR코드

DOI QR Code

Geochemical Studies on the Petrogenesis of Jurassic Peraluminaous Granitic Rocks in the area of Gwangdeoksan in the Northern Gyeonggi Massif

경기육괴 북부 광덕산 일대에 분포하는 쥐라기 고알루미나 화강암질암의 성인에 대한 지화학적 연구

  • Received : 2020.09.02
  • Accepted : 2020.11.02
  • Published : 2020.12.31

Abstract

The Jurassic granitic rocks in the area of Gwangdeoksan located along the boundary between Hwacheon and Cherwon in northern Gyeonggi Massif consist of two-mica granite, garnet-bearing two-mica granite, mica-granite, and porphyritic biotite granite. These granitic rocks are calc-alkaline series and plotted in peraluminious domain in A/CNK vs. A/NK diagram. Petrographical and geochemical data indicate that the porphyritic biotite granite which intruded at the last period originated from distinct parental magma from two-mica granite, garnet-bearing two-mica granite, and mica-granite. On the basis of Rb/Sr vs. Rb/Ba diagram and Al2O3/TiO2 vs. CaO/Na2O, it is inferred the porphyritic biotite granite originated from protolith with less pelitic composition than 3 other granitic rocks. The enriched values of lithophile elements of Cs, Rb, and Ba and negative trough of Nb, P, Ti on spider diagram suggest that the peraluminous Jurassic granitic rocks in Gwangdeoksan area formed in subduction tectonic environment. Whole-rock zircon saturation thermometer indicates that the granitic rocks in the study area were melted at 692-795℃.

경기육괴 북부 화천군과 철원군 경계부의 광덕산 일대에 분포하는 쥐라기 화강암은 복운모화강암, 함석류석복운모화강암, 운모화강암, 반상흑운모화강암으로 이루어져 있다. 이 암석들은 서브알칼리 계열 중 칼크-알칼리 계열에 해당하며, Al 포화지수를 이용한 A/CKN vs. A/KN 다이어그램에서 고알루미나질 영역에 도시된다. 암석기재학적·지화학적 자료는 연구지역에서 가장 후기에 관입한 것으로 알려진 반상흑운모화강암은 복운모화강암, 함석류석복운모화강암 및 운모화강암과는 별개의 모그마로부터 기원하였음을 지시한다. 이들 화강암질암을 형성한 마그마의 근원암의 성질을 알아보기 위해 Rb/Sr vs. Rb/Ba 다이아그램과 Al2O3/TiO2 vs. CaO/Na2O 다이어그램에 도시한 결과, 반상흑운모화강암은 복운모화강암, 함석류석복운모화강암, 운모화강암 보다 이질 성분을 덜 함유하는 근원암으로부터 유래하였음을 알 수 있다. 스파이더 다이어그램에서 친석원소인 Cs, Rb, Ba의 값이 부화되어 나타나고, 고장력 원소인 Nb, P, Ti의 값이 결핍된 값의 지화학적 특성을 보이는 것으로 보아, 광덕산 일대에 분포하는 쥐라기 고알루미나질 화강암질암은 섭입대 환경에서 형성되었으며, 전암 저어콘 포화지온계로부터 692-795℃ 온도 조건에서 용융되었음을 알 수 있다.

Keywords

Acknowledgement

이 연구는 2017년도 강원대학교 전임교원 기본연구비(관리번호 520170515)에 의해 지원을 받았음. 이 논문을 읽고 유익한 조언을 해주신 윤성효 교수님과 길영우 교수님께 깊이 감사드립니다.

References

  1. Hanchar, J.M., and Watson, E.B., 2003, Zircon saturation thermometry. Reviews of Mineralogy and Geochemistry, 53, 89-112. https://doi.org/10.2113/0530089
  2. Hwang, J.H., and Kihm, Y.H., 2007, Geological Report of the Jipori Sheet (1:50,000). Daejeon, Korea Institute of Geoscience and Mineral Resources, 54p. (in Korean with English abstract).
  3. Hwang, S.K., An, Y.M., and Yi, K., 2011, SHRIMP age dating and volcanism times of the igneous rocks in the Cheolwon Basin, Korea. Journal of the Petrological Society of Korea, 20, 231-241 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2011.20.4.231
  4. Hwang, S.K. and Ahn, U.S., 2017, Geochemistry and Tectonic Implications of Triassic Bojangsan Trachyte in the Southern Margin of the Imjingang Belt, Korea. Journal of the Petrological Society of Korea, 26, 113-125 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2017.26.2.113
  5. Hwang, S.K., Kee, W.-S., and Yi, K., 2017, SHRIMP zircon dating and stratigraphic implications of the Bojangsan Trachyte in the Imjingang Belt, Korea. Journal of the Geological Society of Korea, 53, 423-432 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2017.53.3.423
  6. Irvin T.N. and Baragar W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523-548. https://doi.org/10.1139/e71-055
  7. Jung, S., and Pfander, J.A., 2007, Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. European Journal of Mineralogy, 19, 859-870. https://doi.org/10.1127/0935-1221/2007/0019-1774
  8. Kim, C.-B., Turek, A., Chang, H.-W., Park, Y.-S., and Ahn, K.-S., 1999, U-Pb zircon ages for Precambrian and Meso zoic plutonic rocks in the Seoul-Cheongju-Chooncheon area, Gyeonggi massif, Korea. Geochemical Journal, 33, 379-397. https://doi.org/10.2343/geochemj.33.379
  9. Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas, M.J., Sabine P.A., Schmid, R., Soresen, H., Streisen, A., Wooley, A.R., Zanettin, B., 1989, A classification of igneous rocks and glossory of terms. Blackwell, Oxford. 193p.
  10. Lee, B.-J. and Kim, Y.B., 2008, Geological Report of the Sanyangri Sheet (1:50,000). Daejeon, Korea Institute of Geoscience and Mineral Resources, 41p. (in Korean with English abstract).
  11. Maniar, P.D. and Piccoli, P.M., 1989, Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  12. Middlemost, E.A.K., 1994, Naminig materials in the magma/igneous rock system. Earth Science Review, 37, 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
  13. Miller, C.F., McDowell, S.M., and Mapes, R.W., 2003, Hot and cold granites? Implications of zircon saturation temperaturea and preservation of inheritance. Geology, 31, 529-532. https://doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
  14. Park, K.-H., Lee, B.-J., Cho, D.-L., Kim, C.-B., 1997, Geologic report of the Hwacheon Sheet(1:50,000). Daejeon, Korea Institute of Geoscience and Mineral Resources, 33p. (in Korean with English abstract).
  15. Song, K.-Y. and Cho, D.-L., 2007. Geological Report of the Gimhwa Sheet (1:50,000). Daejeon, Korea Institute of Geoscience and Mineral Resources, 58p. (in Korean with English abstract).
  16. Sylvester, P.J., 1988, Post-collisional strongly peraluminous granites. Lithos, 45, 29-44. https://doi.org/10.1016/S0024-4937(98)00024-3
  17. Tarney, J. and Jones, C.E., 1994, Trace element geochemistry of orogenic igneous rocks and crustal growth models. Journal of Geological Society of London, 151, 855-868. https://doi.org/10.1144/gsjgs.151.5.0855
  18. Taylor, S.R. and McLennan, S.M., 1985, The continental crust:its composition and evolution. Blackwell, Oxford.
  19. Watson, E.B., and Harrison, T.M., 1983, Zircon saturation revisited: temperature and composition effects in a variery of crustal magma types. Earth Planetary Science Letters, 64, 295-304. https://doi.org/10.1016/0012-821X(83)90211-X
  20. Wood, D.A., Joron, J.L., Treuil, M., Norry, M. and Tarney, J., 1979, Elemental and Sr isotopie variations in basic lavas from Iceland and the surrounding ocean floor. Contribibution to Mineralogy and Petrology, 70, 319-339. https://doi.org/10.1007/BF00375360
  21. Wood, D.A., Tarney, J. and Weaver, B.L., 1981, Trace element variations in Atlantic ocean basalts and Proterozoic dykes from Northwest Scotland: their bearing upon the nature and geochemical evolution of the upper mantle. Tectonophysics, 75, 91-112. https://doi.org/10.1016/0040-1951(81)90211-0
  22. Yi, E. J., Park, H.E., Park, Y.-R., 2017, Geochemical studies of petrogenesis of the Cretaceous Myeongseongsan Granite in the northwestern Gyeonggi Massif. The Journal of Petrological Society of Korea, 26, 327-339. (in Korean with English abstract) https://doi.org/10.7854/JPSK.2017.26.4.327
  23. Zhao, L., Guo, F., Fan, W., Zhang, Q., Wu, Y., Li, J., and Yan, W., 2016, Early Cretaceous potassic volcanic rocks in the Jiangnan Orogenic Bely, East Chian: Crustal melting in response to subduction of the Pacific-Izanagi ridge? Chemical Geology, 437, 30-43. https://doi.org/10.1016/j.chemgeo.2016.05.011