References
- Abraham, S. M., Lawrence, T., Kleiman, A., Warden, P., Medghalchi, M., Tuckermann, J., Saklatvala, J. and Clark, A. R. (2006) Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. J. Exp. Med. 203, 1883-1889. https://doi.org/10.1084/jem.20060336
- Ali, K., Soond, D. R., Pineiro, R., Hagemann, T., Pearce, W., Lim, E. L., Bouabe, H., Scudamore, C. L., Hancox, T., Maecker, H., Friedman, L., Turner, M., Okkenhaug, K. and Vanhaesebroeck, B. (2014) Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 510, 407-411. https://doi.org/10.1038/nature13444
- Anchoori, R. K., Karanam, B., Peng, S., Wang, J. W., Jiang, R., Tanno, T., Orlowski, R. Z., Matsui, W., Zhao, M., Rudek, M. A., Hung, C. F., Chen, X., Walters, K. J. and Roden, R. B. (2013) A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell 24, 791-805. https://doi.org/10.1016/j.ccr.2013.11.001
- Arguello, F., Alexander, M., Sterry, J. A., Tudor, G., Smith, E. M., Kalavar, N. T., Greene, J. F., Jr., Koss, W., Morgan, C. D., Stinson, S. F., Siford, T. J., Alvord, W. G., Klabansky, R. L. and Sausville, E. A. (1998) Flavopiridol induces apoptosis of normal lymphoid cells, causes immunosuppression, and has potent antitumor activity In vivo against human leukemia and lymphoma xenografts. Blood 91, 2482-2490.
- Azoury, S. C., Gilmore, R. C. and Shukla, V. (2016) Molecularly targeted agents and immunotherapy for the treatment of head and neck squamous cell cancer (HNSCC). Discov. Med. 21, 507-516.
- Bauer, R., Udonta, F., Wroblewski, M., Ben-Batalla, I., Santos, I. M., Taverna, F., Kuhlencord, M., Gensch, V., Pasler, S., Vinckier, S., Brandner, J. M., Pantel, K., Bokemeyer, C., Vogl, T., Roth, J., Carmeliet, P. and Loges, S. (2018) Blockade of myeloid-derived suppressor cell expansion with all-trans retinoic acid increases the efficacy of anti-angiogenic therapy. Cancer Res. 78, 3230-3232.
- Borriello, F., Iannone, R. and Marone, G. (2017) Histamine release from mast cells and basophils. Handb. Exp. Pharmacol. 241, 121-139. https://doi.org/10.1007/164_2017_18
- Bu, L. L., Yu, G. T., Deng, W. W., Mao, L., Liu, J. F., Ma, S. R., Fan, T. F., Hall, B., Kulkarni, A. B., Zhang, W. F. and Sun, Z. J. (2016) Targeting STAT3 signaling reduces immunosuppressive myeloid cells in head and neck squamous cell carcinoma. Oncoimmunology 5, e1130206. https://doi.org/10.1080/2162402X.2015.1130206
- Califano, J. A., Khan, Z., Noonan, K. A., Rudraraju, L., Zhang, Z., Wang, H., Goodman, S., Gourin, C. G., Ha, P. K., Fakhry, C., Saunders, J., Levine, M., Tang, M., Neuner, G., Richmon, J. D., Blanco, R., Agrawal, N., Koch, W. M., Marur, S., Weed, D. T., Serafini, P. and Borrello, I. (2015) Tadalafil augments tumor specific immunity in patients with head and neck squamous cell carcinoma. Clin. Cancer Res. 21, 30-38. https://doi.org/10.1158/1078-0432.CCR-14-1716
- Cantoni, C., Cignarella, F., Ghezzi, L., Mikesell, B., Bollman, B., Berrien-Elliott, M. M., Ireland, A. R., Fehniger, T. A., Wu, G. F. and Piccio, L. (2017) Mir-223 regulates the number and function of myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol. 133, 61-77. https://doi.org/10.1007/s00401-016-1621-6
- Cao, M. D., Xu, Y. L., Youn, J. I., Cabrera, R., Zhang, X. K., Gabrilovich, D., Nelson, D. R. and Liu, C. (2011) Kinase inhibitor Sorafenib modulates immunosuppressive cell populations in a murine liver cancer model. Lab. Invest. 91, 598-608. https://doi.org/10.1038/labinvest.2010.205
- Capuano, G., Rigamonti, N., Grioni, M., Freschi, M. and Bellone, M. (2009) Modulators of arginine metabolism support cancer immunosurveillance. BMC Immunol. 10, 1. https://doi.org/10.1186/1471-2172-10-1
- Cashen, A. F., Schiller, G. J., O'Donnell, M. R. and DiPersio, J. F. (2010) Multicenter, phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia. J. Clin. Oncol. 28, 556-561. https://doi.org/10.1200/JCO.2009.23.9178
- Chang, C. J., Yang, Y. H., Chiu, C. J., Lu, L. C., Liao, C. C., Liang, C. W., Hsu, C. H. and Cheng, A. L. (2018) Targeting tumor-infiltrating Ly6G(+) myeloid cells improves sorafenib efficacy in mouse orthotopic hepatocellular carcinoma. Int. J. Cancer 142, 1878-1889. https://doi.org/10.1002/ijc.31216
- Changelian, P. S., Flanagan, M. E., Ball, D. J., Kent, C. R., Magnuson, K. S., Martin, W. H., Rizzuti, B. J., Sawyer, P. S., Perry, B. D., Brissette, W. H., McCurdy, S. P., Kudlacz, E. M., Conklyn, M. J., Elliott, E. A., Koslov, E. R., Fisher, M. B., Strelevitz, T. J., Yoon, K., Whipple, D. A., Sun, J., Munchhof, M. J., Doty, J. L., Casavant, J. M., Blumenkopf, T. A., Hines, M., Brown, M. F., Lillie, B. M., Subramanyam, C., Shang-Poa, C., Milici, A. J., Beckius, G. E., Moyer, J. D., Su, C., Woodworth, T. G., Gaweco, A. S., Beals, C. R., Littman, B. H., Fisher, D. A., Smith, J. F., Zagouras, P., Magna, H. A., Saltarelli, M. J., Johnson, K. S., Nelms, L. F., Des Etages, S. G., Hayes, L. S., Kawabata, T. T., Finco-Kent, D., Baker, D. L., Larson, M., Si, M. S., Paniagua, R., Higgins, J., Holm, B., Reitz, B., Zhou, Y. J., Morris, R. E., O’Shea, J. J. and Borie, D. C. (2003) Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302, 875-878. https://doi.org/10.1126/science.1087061
- Chen, J., Deng, C. Y., Shi, Q. M., Jiang, J., Zhang, Y. B., Shan, W. and Sun, W. M. (2013) CpG oligodeoxynucleotide induces bone marrow precursor cells into myeloid-derived suppressor cells. Mol. Med. Rep. 8, 1149-1154. https://doi.org/10.3892/mmr.2013.1655
- Chen, S., Huang, A., Chen, H., Yang, Y., Xia, F., Jin, L. and Zhang, J. (2016) miR-34a inhibits the apoptosis of MDSCs by suppressing the expression of N-myc. Immunol. Cell Biol. 94, 563-572. https://doi.org/10.1038/icb.2016.11
- Chen, S., Zhang, Y., Kuzel, T. M. and Zhang, B. (2015a) Regulating tumor myeloid-derived suppressor cells by microRNAs. Cancer Cell Microenviron. 2, e637.
- Chen, S. Q., Wang, L., Fan, J., Ye, C., Dominguez, D., Zhang, Y., Curiel, T. J., Fang, D. Y., Kuzel, T. M. and Zhang, B. (2015b) Host miR155 promotes tumor growth through a myeloid-derived suppressor cell-dependent mechanism. Cancer Res. 75, 519-531. https://doi.org/10.1158/0008-5472.CAN-14-2331
- Cheng, P., Corzo, C. A., Luetteke, N., Yu, B., Nagaraj, S., Bui, M. M., Ortiz, M., Nacken, W., Sorg, C., Vogl, T., Roth, J. and Gabrilovich, D. I. (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J. Exp. Med. 205, 2235-2249. https://doi.org/10.1084/jem.20080132
- Clezardin, P., Ebetino, F. H. and Fournier, P. G. J. (2005) Bisphosphonates and cancer-induced bone disease: beyond their antiresorptive activity. Cancer Res. 65, 4971-4974. https://doi.org/10.1158/0008-5472.CAN-05-0264
- Cushing, T. D., Metz, D. P., Whittington, D. A. and McGee, L. R. (2012) PI3Kdelta and PI3Kgamma as targets for autoimmune and inflammatory diseases. J. Med. Chem. 55, 8559-8581. https://doi.org/10.1021/jm300847w
- Davis, R. J., Moore, E. C., Clavijo, P. E., Friedman, J., Cash, H., Chen, Z., Silvin, C., Van Waes, C. and Allen, C. (2017) Anti-PD-L1 efficacy can be enhanced by inhibition of myeloid-derived suppressor cells with a selective inhibitor of PI3K delta/gamma. Cancer Res. 77, 2607-2619. https://doi.org/10.1158/0008-5472.CAN-16-2534
- Deng, Y. T., Yang, J., Luo, F. F., Qian, J., Liu, R. H., Zhang, D., Yu, H. X. and Chu, Y. W. (2018) mTOR-mediated glycolysis contributes to the enhanced suppressive function of murine tumor-infiltrating monocytic myeloid-derived suppressor cells. Cancer Immunol. Immunother. 67, 1355-1364. https://doi.org/10.1007/s00262-018-2177-1
- Doedens, A. L., Stockmann, C., Rubinstein, M. P., Liao, D., Zhang, N., DeNardo, D. G., Coussens, L. M., Karin, M., Goldrath, A. W. and Johnson, R. S. (2010) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res. 70, 7465-7475. https://doi.org/10.1158/0008-5472.CAN-10-1439
- Draghiciu, O., Nijman, H. W., Hoogeboom, B. N., Meijerhof, T. and Daemen, T. (2015) Sunitinib depletes myeloid-derived suppressor cells and synergizes with a cancer vaccine to enhance antigenspecific immune responses and tumor eradication. Oncoimmunology 4, e989764. https://doi.org/10.4161/2162402X.2014.989764
- Du Four, S., Maenhout, S. K., De Pierre, K., Renmans, D., Niclou, S. P., Thielemans, K., Neyns, B. and Aerts, J. L. (2015) Axitinib increases the infiltration of immune cells and reduces the suppressive capacity of monocytic MDSCs in an intracranial mouse melanoma model. Oncoimmunology 4, e998107. https://doi.org/10.1080/2162402X.2014.998107
- El Gazzar, M. (2014) microRNAs as potential regulators of myeloidderived suppressor cell expansion. Innate Immunity 20, 227-238. https://doi.org/10.1177/1753425913489850
- Engelman, J. A. (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9, 550-562. https://doi.org/10.1038/nrc2664
- Eriksson, E., Wenthe, J., Irenaeus, S., Loskog, A. and Ullenhag, G. (2016) Gemcitabine reduces MDSCs, tregs and TGF beta-1 while restoring the teff/treg ratio in patients with pancreatic cancer. J. Transl. Med. 14, 282. https://doi.org/10.1186/s12967-016-1037-z
- Espagnolle, N., Barron, P., Mandron, M., Blanc, I., Bonnin, J., Agnel, M., Kerbelec, E., Herault, J. P., Savi, P., Bono, F. and Alam, A. (2014) Specific inhibition of the VEGFR-3 tyrosine kinase by SAR131675 reduces peripheral and tumor associated immunosuppressive myeloid cells. Cancers (Basel) 6, 472-490. https://doi.org/10.3390/cancers6010472
- Finke, J., Ko, J., Rini, B., Rayman, P., Ireland, J. and Cohen, P. (2011) MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int. Immunopharm. 11, 856-861. https://doi.org/10.1016/j.intimp.2011.01.030
- Flaxenburg, J. A., Melter, M., Lapchak, P. H., Briscoe, D. M. and Pal, S. (2004) The CD40-induced signaling pathway in endothelial cells resulting in the overexpression of vascular endothelial growth factor involves Ras and phosphatidylinositol 3-kinase. J. Immunol. 172, 7503-7509. https://doi.org/10.4049/jimmunol.172.12.7503
- Freston, J. W. (1982) Cimetidine. I. Developments, pharmacology, and efficacy. Ann. Intern. Med. 97, 573-580. https://doi.org/10.7326/0003-4819-97-4-573
- Gabrilovich, D. I. and Nagaraj, S. (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162-174. https://doi.org/10.1038/nri2506
- Gabrilovich, D. I., Ostrand-Rosenberg, S. and Bronte, V. (2012) Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253-268. https://doi.org/10.1038/nri3175
- Ghofrani, H. A., Voswinckel, R., Reichenberger, F., Olschewski, H., Haredza, P., Karadas, B., Schermuly, R. T., Weissmann, N., Seeger, W. and Grimminger, F. (2004) Differences in hemodynamic and oxygenation responses to three different phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension: a randomized prospective study. J. Am. Coll. Cardiol. 44, 1488-1496. https://doi.org/10.1016/S0735-1097(04)01362-2
- Grauers Wiktorin, H., Nilsson, M. S., Kiffin, R., Sander, F. E., Lenox, B., Rydstrom, A., Hellstrand, K. and Martner, A. (2018) Histamine targets myeloid-derived suppressor cells and improves the anti-tumor efficacy of PD-1/PD-L1 checkpoint blockade. Cancer Immunol. Immunother. 68, 163-174.
- Greenwood, J., Steinman, L. and Zamvil, S. S. (2006) Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat. Rev. Immunol. 6, 358-370. https://doi.org/10.1038/nri1839
- Groth, C., Hu, X., Weber, R., Fleming, V., Altevogt, P., Utikal, J. and Umansky, V. (2018) Immunosuppression mediated by myeloidderived suppressor cells (MDSCs) during tumour progression. Br. J. Cancer 120, 16-25.
- Guha, P., Gardell, J., Darpolor, J., Cunetta, M., Lima, M., Miller, G., Espat, N. J., Junghans, R. P. and Katz, S. C. (2019) STAT3 inhibition induces Bax-dependent apoptosis in liver tumor myeloid-derived suppressor cells. Oncogene 38, 533-548. https://doi.org/10.1038/s41388-018-0449-z
- Guislain, A., Gadiot, J., Kaiser, A., Jordanova, E. S., Broeks, A., Sanders, J., van Boven, H., de Gruijl, T. D., Haanen, J. B., Bex, A. and Blank, C. U. (2015) Sunitinib pretreatment improves tumor-infiltrating lymphocyte expansion by reduction in intratumoral content of myeloid-derived suppressor cells in human renal cell carcinoma. Cancer Immunol. Immunother. 64, 1241-1250. https://doi.org/10.1007/s00262-015-1735-z
- Guo, X., Qiu, W., Wang, J., Liu, Q., Qian, M., Wang, S., Zhang, Z., Gao, X., Chen, Z., Guo, Q., Xu, J., Xue, H. and Li, G. (2018a) Glioma exosomes mediate the expansion and function of myeloid-derived suppressor cells through microRNA-29a/Hbp1 and microRNA-92a/ Prkar1a pathways. Int. J. Cancer 144, 3111-3126. https://doi.org/10.1002/ijc.32052
- Guo, X. F., Qiu, W., Liu, Q. L., Qian, M. Y., Wang, S. B., Zhang, Z. P., Gao, X., Chen, Z. H., Xue, H. and Li, G. (2018b) Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloidderived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways. Oncogene 37, 4239-4259. https://doi.org/10.1038/s41388-018-0261-9
- Hara, E., Smith, R., Parry, D., Tahara, H., Stone, S. and Peters, G. (1996) Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol. Cell. Biol. 16, 859-867. https://doi.org/10.1128/MCB.16.3.859
- Hashimoto, A., Gao, C., Mastio, J., Kossenkov, A., Abrams, S. I., Purandare, A. V., Desilva, H., Wee, S., Hunt, J., Jure-Kunkel, M. and Gabrilovich, D. I. (2018) Inhibition of casein kinase 2 disrupts differentiation of myeloid cells in cancer and enhances the efficacy of immunotherapy in mice. Cancer Res. 78, 5644-5655. https://doi.org/10.1158/0008-5472.CAN-18-1229
- Hegde, V. L., Tomar, S., Jackson, A., Rao, R., Yang, X., Singh, U. P., Singh, N. P., Nagarkatti, P. S. and Nagarkatti, M. (2013) Distinct microRNA expression profile and targeted biological pathways in functional myeloid-derived suppressor cells induced by delta9-tetrahydrocannabinol in vivo: regulation of CCAAT/enhancer-binding protein alpha by microRNA-690. J. Biol. Chem. 288, 36810-36826. https://doi.org/10.1074/jbc.M113.503037
- Heine, A., Flores, C., Gevensleben, H., Diehl, L., Heikenwalder, M., Ringelhan, M., Janssen, K.-P., Nitsche, U., Garbi, N., Brossart, P., Knolle, P. A., Kurts, C. and Hochst, B. (2017) Targeting myeloid derived suppressor cells with all-trans retinoic acid is highly timedependent in therapeutic tumor vaccination. Oncoimmunology 6, e1338995. https://doi.org/10.1080/2162402X.2017.1338995
- Heine, A., Schilling, J., Grunwald, B., Kruger, A., Gevensleben, H., Held, S. A. E., Garbi, N., Kurts, C., Brossart, P., Knolle, P., Diehl, L. and Hochst, B. (2016) The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib. Cancer Immunol. Immunother. 65, 273-282. https://doi.org/10.1007/s00262-015-1790-5
- Hojjat-Farsangi, M. (2014) Small-molecule inhibitors of the receptor tyrosine kinases: promising tools for targeted cancer therapies. Int. J. Mol. Sci. 15, 13768-13801. https://doi.org/10.3390/ijms150813768
- Hossain, F., Majumder, S., Ucar, D. A., Rodriguez, P. C., Golde, T. E., Minter, L. M., Osborne, B. A. and Miele, L. (2018) Notch signaling in myeloid cells as a regulator of tumor immune responses. Front. Immunol. 9, 1288. https://doi.org/10.3389/fimmu.2018.01288
- Hou, Y., Feng, Q., Xu, M., Li, G. S., Liu, X. N., Sheng, Z., Zhou, H., Ma, J., Wei, Y., Sun, Y. X., Yu, Y. Y., Qiu, J. H., Shao, L. L., Liu, X. G., Hou, M. and Peng, J. (2016) High-dose dexamethasone corrects impaired myeloid-derived suppressor cell function via Ets1 in immune thrombocytopenia. Blood 127, 1587-1597. https://doi.org/10.1182/blood-2015-10-674531
- Huang, A. F., Zhang, H. T., Chen, S., Xia, F., Yang, Y., Dong, F. L., Sun, D., Xiong, S. D. and Zhang, J. P. (2014) miR-34a expands myeloid-derived suppressor cells via apoptosis inhibition. Exp. Cell Res. 326, 259-266. https://doi.org/10.1016/j.yexcr.2014.04.010
- Huber, V., Vallacchi, V., Fleming, V., Hu, X., Cova, A., Dugo, M., Shahaj, E., Sulsenti, R., Vergani, E., Filipazzi, P., De Laurentiis, A., Lalli, L., Di Guardo, L., Patuzzo, R., Vergani, B., Casiraghi, E., Cossa, M., Gualeni, A., Bollati, V., Arienti, F., De Braud, F., Mariani, L., Villa, A., Altevogt, P., Umansky, V., Rodolfo, M. and Rivoltini, L. (2018) Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. J. Clin. Invest. 128, 5505-5516. https://doi.org/10.1172/JCI98060
- Jeon, C., Kang, S., Park, S., Lim, K., Hwang, K. W. and Min, H. (2011) T cell stimulatory effects of Korean red ginseng through modulation of myeloid-derived suppressor cells. J. Ginseng Res. 35, 462-470. https://doi.org/10.5142/jgr.2011.35.4.462
- Kostlin, N., Kugel, H., Spring, B., Leiber, A., Marme, A., Henes, M., Rieber, N., Hartl, D., Poets, C. F. and Gille, C. (2014) Granulocytic myeloid derived suppressor cells expand in human pregnancy and modulate T-cell responses. Eur. J. Immunol. 44, 2582-2591. https://doi.org/10.1002/eji.201344200
- Kanasty, R., Dorkin, J. R., Vegas, A. and Anderson, D. (2013) Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967-977. https://doi.org/10.1038/nmat3765
- Kim, K., Skora, A. D., Li, Z. B., Liu, Q., Tam, A. J., Blosser, R. L., Diaz, L. A., Papadopoulos, N., Kinzler, K. W., Vogelstein, B. and Zhou, S. B. (2014) Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc. Natl. Acad. Sci. U.S.A. 111, 11774-11779. https://doi.org/10.1073/pnas.1410626111
- Kim, S. H., Li, M., Trousil, S., Zhang, Y., Pasca di Magliano, M., Swanson, K. D. and Zheng, B. (2017) Phenformin inhibits myeloid-derived suppressor cells and enhances the anti-tumor activity of PD-1 blockade in melanoma. J. Invest. Dermatol. 137, 1740-1748. https://doi.org/10.1016/j.jid.2017.03.033
- Klinman, D. M. (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol. 4, 249-259. https://doi.org/10.1038/nri1329
- Ko, H. J. and Kim, Y. J. (2016) Signal transducer and activator of transcription proteins: regulators of myeloid-derived suppressor cellmediated immunosuppression in cancer. Arch. Pharm. Res. 39, 1597-1608. https://doi.org/10.1007/s12272-016-0822-9
- Ko, J. S., Rayman, P., Ireland, J., Swaidani, S., Li, G. Q., Bunting, K. D., Rini, B., Finke, J. H. and Cohen, P. A. (2010) Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res. 70, 3526-3536. https://doi.org/10.1158/0008-5472.CAN-09-3278
- Ko, J. S., Zea, A. H., Rin, B. I., Ireland, J. L., Elson, P., Cohen, P., Golshayan, A., Rayman, P. A., Wood, L., Garcia, J., Dreicer, R., Bukowski, R. and Finke, J. H. (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15, 2148-2157. https://doi.org/10.1158/1078-0432.CCR-08-1332
- Kremmyda, L.-S., Tvrzicka, E., Stankova, B. and Zak, A. (2011) Fatty acids as biocompounds: their role in human metabolism, health and disease: a review. part 2: fatty acid physiological roles and applications in human health and disease. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 155, 195-218. https://doi.org/10.5507/bp.2011.052
- Kuchen, S., Resch, W., Yamane, A., Kuo, N., Li, Z., Chakraborty, T., Wei, L., Laurence, A., Yasuda, T., Peng, S., Hu-Li, J., Lu, K., Dubois, W., Kitamura, Y., Charles, N., Sun, H. W., Muljo, S., Schwartzberg, P. L., Paul, W. E., O’Shea, J., Rajewsky, K. and Casellas, R. (2010) Regulation of microRNA expression and abundance during lymphopoiesis. Immunity 32, 828-839. https://doi.org/10.1016/j.immuni.2010.05.009
- Ledo, A. M., Sasso, M. S., Bronte, V., Marigo, I., Boyd, B. J., Garcia-Fuentes, M. and Alonso, M. J. (2018) Co-delivery of RNAi and chemokine by polyarginine nanocapsules enables the modulation of myeloid-derived suppressor cells. J. Control. Release 295, 60-73. https://doi.org/10.1016/j.jconrel.2018.12.041
- Lee, B. R., Kwon, B. E., Hong, E. H., Shim, A., Song, J. H., Kim, H. M., Chang, S. Y., Kim, Y. J., Kweon, M. N., Youn, J. I. and Ko, H. J. (2016) Interleukin-10 attenuates tumour growth by inhibiting interleukin-6/signal transducer and activator of transcription 3 signalling in myeloid-derived suppressor cells. Cancer Lett. 381, 156-164. https://doi.org/10.1016/j.canlet.2016.07.012
- Lei, A., Yang, Q., Li, X., Chen, H., Shi, M., Xiao, Q., Cao, Y., He, Y. and Zhou, J. (2016) Atorvastatin promotes the expansion of myeloidderived suppressor cells and attenuates murine colitis. Immunology 149, 432-446. https://doi.org/10.1111/imm.12662
- Li, A., Barsoumian, H. B., Schoenhals, J. E., Cushman, T. R., Caetano, M. S., Wang, X., Valdecanas, D. R., Niknam, S., Younes, A. I., Li, G., Woodward, W. A., Cortez, M. A. and Welsh, J. W. (2018a) Indoleamine 2,3-dioxygenase 1 inhibition targets anti-PD1-resistant lung tumors by blocking myeloid-derived suppressor cells. Cancer Lett. 431, 54-63. https://doi.org/10.1016/j.canlet.2018.05.005
-
Li, J., Yu, S., Ying, J., Shi, T. and Wang, P. (2017) Resveratrol prevents ROS-induced apoptosis in high glucose-treated retinal capillary endothelial cells via the activation of AMPK/Sirt1/PGC-
$1{\alpha}$ pathway. Oxid. Med. Cell. Longev. 2017, 7584691. https://doi.org/10.1155/2017/7584691 - Li, L., Wang, L., Li, J., Fan, Z., Yang, L., Zhang, Z., Zhang, C., Yue, D., Qin, G., Zhang, T., Li, F., Chen, X., Ping, Y., Wang, D., Gao, Q., He, Q., Huang, L., Li, H., Huang, J., Zhao, X., Xue, W., Sun, Z., Lu, J., Yu, J. J., Zhao, J., Zhang, B. and Zhang, Y. (2018b) Metformininduced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. Cancer Res. 78, 1779-1791. https://doi.org/10.1158/0008-5472.CAN-17-2460
- Li, L., Zhang, J., Diao, W., Wang, D., Wei, Y., Zhang, C. Y. and Zen, K. (2014) MicroRNA-155 and microRNA-21 promote the expansion of functional myeloid-derived suppressor cells. J. Immunol. 192, 1034-1043. https://doi.org/10.4049/jimmunol.1301309
- Lin, Y., Wang, B. S., Shan, W., Tan, Y. M., Feng, J. J., Xu, L., Wang, L. M. M., Han, B. Q., Zhang, M. M., Yu, J., Yu, X. H. and Huang, H. (2018) mTOR inhibitor rapamycin induce polymorphonuclear myeloid-derived suppressor cells mobilization and function in protecting against acute graft-versus-host disease after bone marrow transplantation. Clin. Immunol. 187, 122-131. https://doi.org/10.1016/j.clim.2017.11.005
- Liu, L., Ye, T. H., Han, Y. P., Song, H., Zhang, Y. K., Xia, Y., Wang, N. Y., Xiong, Y., Song, X. J., Zhu, Y. X., Li, D. L., Zeng, J., Ran, K., Peng, C. T., Wei, Y. Q. and Yu, L. T. (2014) Reductions in myeloid-derived suppressor cells and lung metastases using AZD4547 treatment of a metastatic murine breast tumor model. Cell. Phys. Biochem. 33, 633-645. https://doi.org/10.1159/000358640
- Liu, Q., Zhang, M., Jiang, X., Zhang, Z., Dai, L., Min, S., Wu, X., He, Q., Liu, J., Zhang, Y., Zhang, Z. and Yang, R. (2011) miR-223 suppresses differentiation of tumor-induced CD11b(+) Gr1(+) myeloidderived suppressor cells from bone marrow cells. Int. J. Cancer 129, 2662-2673. https://doi.org/10.1002/ijc.25921
- Liu, Y., Lai, L., Chen, Q., Song, Y., Xu, S., Ma, F., Wang, X., Wang, J., Yu, H., Cao, X. and Wang, Q. (2012) MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloidderived suppressor cells via targeting of PTEN. J. Immunol. 188, 5500-5510. https://doi.org/10.4049/jimmunol.1103505
- Liu, Y. F., Wei, J. Y., Shi, M. H., Jiang, H. and Zhou, J. (2016) Glucocorticoid induces hepatic steatosis by inhibiting activating transcription factor 3 (ATF3)/S100A9 protein signaling in granulocytic myeloidderived suppressor cells. J. Biol. Chem. 291, 21771-21785. https://doi.org/10.1074/jbc.M116.726364
- Liu, Y. F., Zhuang, K. H., Chen, B., Li, P. W., Zhou, X., Jiang, H., Zhong, L. M. and Liu, F. B. (2018) Expansion and activation of monocyticmyeloid-derived suppressor cell via STAT3/arginase-I signaling in patients with ankylosing spondylitis. Arthritis Res. Ther. 20, 168. https://doi.org/10.1186/s13075-018-1654-4
- Long, A. H., Highfill, S. L., Cui, Y., Smith, J. P., Walker, A. J., Ramakrishna, S., El-Etriby, R., Galli, S., Tsokos, M. G., Orentas, R. J. and Mackall, C. L. (2016) Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol. Res. 4, 869-880. https://doi.org/10.1158/2326-6066.CIR-15-0230
- Maenhout, S. K., Du Four, S., Corthals, J., Neyns, B., Thielemans, K. and Aerts, J. L. (2014) AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloidderived suppressor cells. Oncotarget 5, 6801-6815. https://doi.org/10.18632/oncotarget.2254
- Mandelker, D., Gabelli, S. B., Schmidt-Kittler, O., Zhu, J., Cheong, I., Huang, C. H., Kinzler, K. W., Vogelstein, B. and Amzel, L. M. (2009) A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Proc. Natl. Acad. Sci. U.S.A. 106, 16996-17001. https://doi.org/10.1073/pnas.0908444106
-
Mao, L., Zhao, Z. L., Yu, G. T., Wu, L., Deng, W. W., Li, Y. C., Liu, J. F., Bu, L. L., Liu, B., Kulkarni, A. B., Zhang, W. F., Zhang, L. and Sun, Z. J. (2018)
${\gamma}$ -Secretase inhibitor reduces immunosuppressive cells and enhances tumour immunity in head and neck squamous cell carcinoma. Int. J. Cancer 142, 999-1009. https://doi.org/10.1002/ijc.31115 - Marigo, I., Bosio, E., Solito, S., Mesa, C., Fernandez, A., Dolcetti, L., Ugel, S., Sonda, N., Bicciato, S., Falisi, E., Calabrese, F., Basso, G., Zanovello, P., Cozzi, E., Mandruzzato, S. and Bronte, V. (2010) Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32, 790-802. https://doi.org/10.1016/j.immuni.2010.05.010
- Martin, R. K., Saleem, S. J., Folgosa, L., Zellner, H. B., Damle, S. R., Nguyen, G. K., Ryan, J. J., Bear, H. D., Irani, A. M. and Conrad, D. H. (2014) Mast cell histamine promotes the immunoregulatory activity of myeloid-derived suppressor cells. J. Leukoc. Biol. 96, 151-159. https://doi.org/10.1189/jlb.5A1213-644R
- McClure, C., Brudecki, L., Ferguson, D. A., Yao, Z. Q., Moorman, J. P., McCall, C. E. and El Gazzar, M. (2014) MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis. Infect. Immun. 82, 3816-3825. https://doi.org/10.1128/IAI.01495-14
- Melani, C., Sangaletti, S., Barazzetta, F. M., Werb, Z. and Colombo, M. P. (2007) Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 67, 11438-11446. https://doi.org/10.1158/0008-5472.CAN-07-1882
- Mikyskova, R., Indrova, M., Vlkova, V., Bieblova, J., Simova, J., Parackova, Z., Pajtasz-Piasecka, E., Rossowska, J. and Reinis, M. (2014) DNA demethylating agent 5-azacytidine inhibits myeloidderived suppressor cells induced by tumor growth and cyclophosphamide treatment. J. Leukoc. Biol. 95, 743-753. https://doi.org/10.1189/jlb.0813435
- Moon, Y. W., Hajjar, J., Hwu, P. and Naing, A. (2015) Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J. Immunother. Cancer 3, 51. https://doi.org/10.1186/s40425-015-0094-9
- Motzer, R. J., Rini, B. I., Bukowski, R. M., Curti, B. D., George, D. J., Hudes, G. R., Redman, B. G., Margolin, K. A., Merchan, J. R., Wilding, G., Ginsberg, M. S., Bacik, J., Kim, S. T., Baum, C. M. and Michaelson, M. D. (2006) Sunitinib in patients with metastatic renal cell carcinoma. JAMA 295, 2516-2524. https://doi.org/10.1001/jama.295.21.2516
- Nakamura, T., Nakao, T., Yoshimura, N. and Ashihara, E. (2015) Rapamycin prolongs cardiac allograft survival in a mouse model by inducing myeloid-derived suppressor cells. Am. J. Transplant. 15, 2364-2377. https://doi.org/10.1111/ajt.13276
- Nam, S., Kang, K., Cha, J. S., Kim, J. W., Lee, H. G., Kim, Y., Yang, Y., Lee, M. S. and Lim, J. S. (2016) Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function. J. Leukoc. Biol. 100, 1273-1284. https://doi.org/10.1189/jlb.1A0215-068RR
- Nam, S., Lee, A., Lim, J. and Lim, J.-S. (2019) Analysis of the expression and regulation of PD-1 protein on the surface of myeloid-derived suppressor cells (MDSCs). Biomol. Ther. (Seoul) 27, 63-70. https://doi.org/10.4062/biomolther.2018.201
- Nandi, P., Girish, G. V., Majumder, M., Xin, X., Tutunea-Fatan, E. and Lala, P. K. (2017) PGE2 promotes breast cancer-associated lymphangiogenesis by activation of EP4 receptor on lymphatic endothelial cells. BMC Cancer 17, 11. https://doi.org/10.1186/s12885-016-3018-2
- Nefedova, Y., Fishman, M., Sherman, S., Wang, X., Beg, A. A. and Gabrilovich, D. I. (2007) Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res. 67, 11021-11028. https://doi.org/10.1158/0008-5472.CAN-07-2593
- Nefedova, Y., Nagaraj, S., Rosenbauer, A., Muro-Cacho, C., Sebti, S. M. and Gabrilovich, D. I. (2005) Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res. 65, 9525-9535. https://doi.org/10.1158/0008-5472.CAN-05-0529
- Nishimura, K., Saegusa, J., Matsuki, F., Akashi, K., Kageyama, G. and Morinobu, A. (2015) Tofacitinib facilitates the expansion of myeloidderived suppressor cells and ameliorates arthritis in SKG mice. Arthritis Rheumatol. 67, 893-902. https://doi.org/10.1002/art.39007
- Noman, M. Z., Janji, B., Hu, S., Wu, J. C., Martelli, F., Bronte, V. and Chouaib, S. (2015) Tumor-promoting effects of myeloid-derived suppressor cells are potentiated by hypoxia-induced expression of miR-210. Cancer Res. 75, 3771-3787. https://doi.org/10.1158/0008-5472.CAN-15-0405
- Noonan, K. A., Ghosh, N., Rudraraju, L., Bui, M. and Borrello, I. (2014) Targeting immune suppression with PDE5 inhibition in end-stage multiple myeloma. Cancer Immunol. Res. 2, 725-731. https://doi.org/10.1158/2326-6066.CIR-13-0213
- O’Neill, L. A. J. and Hardie, D. G. (2013) Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493, 346-355. https://doi.org/10.1038/nature11862
- Okuma, A., Hanyu, A., Watanabe, S. and Hara, E. (2017) p16(Ink4a) and p21(Cip1/Waf1) promote tumour growth by enhancing myeloid-derived suppressor cells chemotaxis. Nat. Commun. 8, 2050. https://doi.org/10.1038/s41467-017-02281-x
- Orillion, A., Hashimoto, A., Damayanti, N., Shen, L., Adelaiye-Ogala, R., Arisa, S., Chintala, S., Ordentlich, P., Kao, C., Elzey, B., Gabrilovich, D. and Pili, R. (2017) Entinostat neutralizes myeloid-derived suppressor cells and enhances the antitumor effect of PD-1 inhibition in murine models of lung and renal cell carcinoma. Clin. Cancer Res. 23, 5187-5201. https://doi.org/10.1158/1078-0432.CCR-17-0741
- Orucevic, A., Bechberger, J., Green, A. M., Shapiro, R. A., Billiar, T. R. and Lala, P. K. (1999) Nitric-oxide production by murine mammary adenocarcinoma cells promotes tumor-cell invasiveness. Int. J. Cancer 81, 889-896. https://doi.org/10.1002/(SICI)1097-0215(19990611)81:6<889::AID-IJC9>3.0.CO;2-2
- Pan, P. Y., Ma, G., Weber, K. J., Ozao-Choy, J., Wang, G., Yin, B., Divino, C. M. and Chen, S. H. (2010) Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res. 70, 99-108. https://doi.org/10.1158/0008-5472.CAN-09-1882
- Pan, T., Zhong, L., Wu, S., Cao, Y., Yang, Q., Cai, Z., Cai, X., Zhao, W., Ma, N., Zhang, W., Zhang, H. and Zhou, J. (2016) 17-Oestradiol enhances the expansion and activation of myeloid-derived suppressor cells via signal transducer and activator of transcription (STAT)-3 signalling in human pregnancy. Clin. Exp. Immunol. 185, 86-97. https://doi.org/10.1111/cei.12790
- Piazza, F., Manni, S., Ruzzene, M., Pinna, L. A., Gurrieri, C. and Semenzato, G. (2012) Protein kinase CK2 in hematologic malignancies: reliance on a pivotal cell survival regulator by oncogenic signaling pathways. Leukemia 26, 1174-1179. https://doi.org/10.1038/leu.2011.385
- Qin, G., Lian, J., Huang, L., Zhao, Q., Liu, S., Zhang, Z., Chen, X., Yue, D., Li, L., Li, F., Wang, L., Umansky, V., Zhang, B., Yang, S. and Zhang, Y. (2018) Metformin blocks myeloid-derived suppressor cell accumulation through AMPK-DACH1-CXCL1 axis. Oncoimmunology 7, e1442167. https://doi.org/10.1080/2162402X.2018.1442167
- Rodriguez, P. C., Hernandez, C. P., Quiceno, D., Dubinett, S. M., Zabaleta, J., Ochoa, J. B., Gilbert, J. and Ochoa, A. C. (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J. Exp. Med. 202, 931-939. https://doi.org/10.1084/jem.20050715
- Rong, Y., Yuan, C. H., Qu, Z., Zhou, H., Guan, Q., Yang, N., Leng, X. H., Bu, L., Wu, K. and Wang, F. B. (2016) Doxorubicin resistant cancer cells activate myeloid-derived suppressor cells by releasing PGE2. Sci. Rep. 6, 23824. https://doi.org/10.1038/srep23824
- Roskoski, R., Jr. (2007) Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem. Biophys. Res. Commun. 356, 323-328. https://doi.org/10.1016/j.bbrc.2007.02.156
- Sawant, A., Schafer, C. C., Jin, T. H., Zmijewski, J., Tse, H. M., Roth, J., Sun, Z. H., Siegal, G. P., Thannickal, V. J., Grant, S. C., Ponnazhagan, S. and Deshane, J. S. (2013) Enhancement of antitumor immunity in lung cancer by targeting myeloid-derived suppressor cell pathways. Cancer Res. 73, 6609-6620. https://doi.org/10.1158/0008-5472.CAN-13-0987
- Schacke, H., Docke, W. D. and Asadullah, K. (2002) Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther. 96, 23-43. https://doi.org/10.1016/S0163-7258(02)00297-8
- Schmid, M. C., Avraamides, C. J., Dippold, H. C., Franco, I., Foubert, P., Ellies, L. G., Acevedo, L. M., Manglicmot, J. R., Song, X., Wrasidlo, W., Blair, S. L., Ginsberg, M. H., Cheresh, D. A., Hirsch, E., Field, S. J. and Varner, J. A. (2011) Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell 19, 715-727. https://doi.org/10.1016/j.ccr.2011.04.016
- Schwartz, D. M., Kanno, Y., Villarino, A., Ward, M., Gadina, M. and O'Shea, J. J. (2017) JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 17, 78.
- Scuto, A., Krejci, P., Popplewell, L., Wu, J., Wang, Y., Kujawski, M., Kowolik, C., Xin, H., Chen, L., Wang, Y., Kretzner, L., Yu, H., Wilcox, W. R., Yen, Y., Forman, S. and Jove, R. (2011) The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival. Leukemia 25, 538-550. https://doi.org/10.1038/leu.2010.289
- Serafini, P., Meckel, K., Kelso, M., Noonan, K., Califano, J., Koch, W., Dolcetti, L., Bronte, V. and Borrello, I. (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J. Exp. Med. 203, 2691-2702. https://doi.org/10.1084/jem.20061104
- Setten, R. L., Rossi, J. J. and Han, S. P. (2019) The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 18, 421-446. https://doi.org/10.1038/s41573-019-0017-4
- Shen, L., Orillion, A. and Pili, R. (2016) Histone deacetylase inhibitors as immunomodulators in cancer therapeutics. Epigenomics 8, 415-428. https://doi.org/10.2217/epi.15.118
- Shi, G., Li, D., Ren, J., Li, X., Wang, T., Dou, H. and Hou, Y. (2019) mTOR inhibitor INK128 attenuates dextran sodium sulfate-induced colitis by promotion of MDSCs on Treg cell expansion. J. Cell. Physiol. 234, 1618-1629. https://doi.org/10.1002/jcp.27032
- Shirota, Y., Shirota, H. and Klinman, D. M. (2012) Intratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. J. Immunol. 188, 1592-1599. https://doi.org/10.4049/jimmunol.1101304
- Singh, U. P., Singh, N. P., Singh, B., Hofseth, L. J., Taub, D. D., Price, R. L., Nagarkatti, M. and Nagarkatti, P. S. (2012) Role of resveratrol-induced CD11b(+) Gr-1(+) myeloid derived suppressor cells (MDSCs) in the reduction of CXCR3(+) T cells and amelioration of chronic colitis in IL-10(-/-) mice. Brain Behav. Immun. 26, 72-82. https://doi.org/10.1016/j.bbi.2011.07.236
- Sinha, P., Clements, V. K., Fulton, A. M. and Ostrand-Rosenberg, S. (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res. 67, 4507-4513. https://doi.org/10.1158/0008-5472.CAN-06-4174
- Sinha, P., Okoro, C., Foell, D., Freeze, H. H., Ostrand-Rosenberg, S. and Srikrishna, G. (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J. Immunol. 181, 4666-4675. https://doi.org/10.4049/jimmunol.181.7.4666
- Soong, R. S., Anchoori, R. K., Yang, B., Yang, A., Tseng, S. H., He, L. M., Tsai, Y. C., Roden, R. B. S. and Hung, C. F. (2016) RPN13/ADRM1 inhibitor reverses immunosuppression by myeloid-derived suppressor cells. Oncotarget 7, 68489-68502. https://doi.org/10.18632/oncotarget.12095
- Suzuki, E. (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 11, 6713-6721. https://doi.org/10.1158/1078-0432.CCR-05-0883
- Tobin, R. P., Jordan, K. R., Robinson, W. A., Davis, D., Borges, V. F., Gonzalez, R., Lewis, K. D. and McCarter, M. D. (2018) Targeting myeloid-derived suppressor cells using all-trans retinoic acid in melanoma patients treated with Ipilimumab. Int. Immunopharm. 63, 282-291. https://doi.org/10.1016/j.intimp.2018.08.007
- Trikha, P., Plews, R. L., Stiff, A., Gautam, S., Hsu, V., Abood, D., Wesolowski, R., Landi, I., Mo, X., Phay, J., Chen, C.-S., Byrd, J., Caligiuri, M., Tridandapani, S. and Carson, W. E. (2016) Targeting myeloid-derived suppressor cells using a novel adenosine monophosphate-activated protein kinase (AMPK) activator. Oncoimmunology 5, e1214787. https://doi.org/10.1080/2162402X.2016.1214787
- van Hooren, L., Georganaki, M., Huang, H., Mangsbo, S. M. and Dimberg, A. (2016) Sunitinib enhances the antitumor responses of agonistic CD40-antibody by reducing MDSCs and synergistically improving endothelial activation and T-cell recruitment. Oncotarget 7, 50277-50289. https://doi.org/10.18632/oncotarget.10364
- Veltman, J. D., Lambers, M. E. H., van Nimwegen, M., Hendriks, R. W., Hoogsteden, H. C., Aerts, J. G. J. V. and Hegmans, J. P. J. J. (2010) COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. BMC Cancer 10, 464. https://doi.org/10.1186/1471-2407-10-464
- Vonderheide, R. H. and Glennie, M. J. (2013) Agonistic CD40 antibodies and cancer therapy. Clin. Cancer Res. 19, 1035-1043. https://doi.org/10.1158/1078-0432.CCR-12-2064
- Wang, S. H., Lu, Q. Y., Guo, Y. H., Song, Y. Y., Liu, P. J. and Wang, Y. C. (2016) The blockage of Notch signalling promoted the generation of polymorphonuclear myeloid-derived suppressor cells with lower immunosuppression. Eur. J. Cancer 68, 90-105. https://doi.org/10.1016/j.ejca.2016.08.019
- Weed, D. T., Vella, J. L., Reis, I. M., De la Fuente, A. C., Gomez, C., Sargi, Z., Nazarian, R., Califano, J., Borrello, I. and Serafini, P. (2015) Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin. Cancer Res. 21, 39-48. https://doi.org/10.1158/1078-0432.CCR-14-1711
- Wei, C., Wang, Y. X., Ma, L., Wang, X., Chi, H., Zhang, S., Liu, T., Li, Z. Y., Xiang, D. M., Dong, Y. L., Wu, X. G., Shi, W. Y. and Gao, H. (2018) Rapamycin nano-micelle ophthalmic solution reduces corneal allograft rejection by potentiating myeloid-derived suppressor cells' function. Front. Immunol. 9, 2283. https://doi.org/10.3389/fimmu.2018.02283
- Winkler, D. G., Faia, K. L., DiNitto, J. P., Ali, J. A., White, K. F., Brophy, E. E., Pink, M. M., Proctor, J. L., Lussier, J., Martin, C. M., Hoyt, J. G., Tillotson, B., Murphy, E. L., Lim, A. R., Thomas, B. D., Macdougall, J. R., Ren, P., Liu, Y., Li, L. S., Jessen, K. A., Fritz, C. C., Dunbar, J. L., Porter, J. R., Rommel, C., Palombella, V. J., Changelian, P. S. and Kutok, J. L. (2013) PI3K-delta and PI3K-gamma inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem. Biol. 20, 1364-1374. https://doi.org/10.1016/j.chembiol.2013.09.017
- Xiao, L., Erb, U., Zhao, K., Hackert, T. and Zoller, M. (2017) Efficacy of vaccination with tumor-exosome loaded dendritic cells combined with cytotoxic drug treatment in pancreatic cancer. Oncoimmunology 6, e1319044. https://doi.org/10.1080/2162402X.2017.1319044
- Xu, Z., Ji, J. J., Xu, J. J., Li, D., Shi, G. P., Liu, F., Ding, L., Ren, J., Dou, H., Wang, T. T. and Hou, Y. Y. (2017) MiR-30a increases MDSC differentiation and immunosuppressive function by targeting SOCS3 in mice with B-cell lymphoma. FEBS J. 284, 2410-2424. https://doi.org/10.1111/febs.14133
- Yamaoka, T., Kusumoto, S., Ando, K., Ohba, M. and Ohmori, T. (2018) Receptor tyrosine kinase-targeted cancer therapy. Int. J. Mol. Sci. 19, 3491. https://doi.org/10.3390/ijms19113491
- Yan, D. H., Yang, Q., Shi, M. H., Zhong, L. M., Wu, C. Y., Meng, T., Yin, H. Y. and Zhou, J. (2013) Polyunsaturated fatty acids promote the expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 pathway. Eur. J. Immunol. 43, 2943-2955. https://doi.org/10.1002/eji.201343472
- Yoyen-Ermis, D., Ozturk-Atar, K., Kursunel, M. A., Aydin, C., Ozkazanc, D., Gurbuz, M. U., Uner, A., Tulu, M., Calis, S. and Esendagli, G. (2018) Tumor-induced myeloid cells are reduced by gemcitabineloaded PAMAM dendrimers decorated with anti-Flt1 antibody. Mol. Pharm. 15, 1526-1533. https://doi.org/10.1021/acs.molpharmaceut.7b01075
- Yu, H. and Jove, R. (2004) The STATs of cancer--new molecular targets come of age. Nat. Rev. Cancer 4, 97-105. https://doi.org/10.1038/nrc1275
- Yun, T. K. (2001) Brief introduction of Panax ginseng C.A. Meyer. J. Kor. Med. Sci. 16, S3. https://doi.org/10.3346/jkms.2001.16.S.S3
- Zhang, C., Wang, S., Li, J. W., Zhang, W. T., Zheng, L., Yang, C., Zhu, T. Y. and Rong, R. M. (2017) The mTOR signal regulates myeloidderived suppressor cells differentiation and immunosuppressive function in acute kidney injury. Cell Death Dis. 8, e2695. https://doi.org/10.1038/cddis.2017.86
- Zhang, M. M., Liu, Q. F., Mi, S. P., Liang, X., Zhang, Z. Q., Su, X. M., Liu, J. Y., Chen, Y. Y., Wang, M. M., Zhang, Y. A., Guo, F. H., Zhang, Z. J. and Yang, R. C. (2011) Both miR-17-5p and miR-20a alleviate suppressive potential of myeloid-derived suppressor cells by modulating STAT3 expression. J. Immunol. 186, 4716-4724. https://doi.org/10.4049/jimmunol.1002989
- Zhang, S., Wu, K., Liu, Y., Lin, Y., Zhang, X., Zhou, J., Zhang, H., Pan, T. and Fu, Y. (2016) Finasteride enhances the generation of human myeloid-derived suppressor cells by up-regulating the COX2/PGE2 pathway. PLoS ONE 11, e0156549. https://doi.org/10.1371/journal.pone.0156549
- Zhang, X. H., Fang, X. Y., Gao, Z. Z., Chen, W., Tao, F. F., Cai, P. F., Yuan, H. Q., Shu, Y. Q., Xu, Q., Sun, Y. and Gu, Y. H. (2014) Axitinib, a selective inhibitor of vascular endothelial growth factor receptor, exerts an anticancer effect in melanoma through promoting antitumor immunity. Anticancer Drugs 25, 204-211. https://doi.org/10.1097/CAD.0000000000000033
- Zhao, Y., Shao, Q., Zhu, H., Xu, H., Long, W., Yu, B., Zhou, L., Xu, H., Wu, Y. and Su, Z. (2018a) Resveratrol ameliorates Lewis lung carcinoma-bearing mice development, decreases granulocytic myeloid-derived suppressor cell accumulation and impairs its suppressive ability. Cancer Sci. 109, 2677-2686. https://doi.org/10.1111/cas.13720
- Zhao, Y., Shen, X. F., Cao, K., Ding, J., Kang, X., Guan, W. X., Ding, Y. T., Liu, B. R. and Du, J. F. (2018b) Dexamethasone-induced myeloid-derived suppressor cells prolong allo cardiac graft survival through iNOS-and glucocorticoid receptor-dependent mechanism. Front. Immunol. 9, 282. https://doi.org/10.3389/fimmu.2018.00282
- Zheng, Y. S., Xu, M., Li, X., Jia, J. P., Fan, K. X. and Lai, G. X. (2013) Cimetidine suppresses lung tumor growth in mice through proapoptosis of myeloid-derived suppressor cells. Mol. Immunol. 54, 74-83. https://doi.org/10.1016/j.molimm.2012.10.035
- Zilio, S., Vella, J. L., De la Fuente, A. C., Daftarian, P. M., Weed, D. T., Kaifer, A., Marigo, I., Leone, K., Bronte, V. and Serafini, P. (2017) 4PD functionalized dendrimers: a flexible tool for in vivo gene silencing of tumor-educated myeloid cells. J. Immunol. 198, 4166-4177. https://doi.org/10.4049/jimmunol.1600833
- Zoglmeier, C., Bauer, H., Noerenberg, D., Wedekind, G., Bittner, P., Sandholzer, N., Rapp, M., Anz, D., Endres, S. and Bourquin, C. (2011) CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin. Cancer Res. 17, 1765-1775. https://doi.org/10.1158/1078-0432.CCR-10-2672
Cited by
- A Novel Anti-PD-L1 Antibody Exhibits Antitumor Effects on Multiple Myeloma in Murine Models via Antibody-Dependent Cellular Cytotoxicity vol.29, pp.2, 2021, https://doi.org/10.4062/biomolther.2020.131