DOI QR코드

DOI QR Code

Modulation of Immunosuppression by Oligonucleotide-Based Molecules and Small Molecules Targeting Myeloid-Derived Suppressor Cells

  • Lim, Jihyun (Department of Biological Science, Sookmyung Women's University) ;
  • Lee, Aram (Department of Biological Science, Sookmyung Women's University) ;
  • Lee, Hee Gu (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lim, Jong-Seok (Department of Biological Science, Sookmyung Women's University)
  • Received : 2019.04.25
  • Accepted : 2019.07.04
  • Published : 2019.12.30

Abstract

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exert suppressive function on the immune response. MDSCs expand in tumor-bearing hosts or in the tumor microenvironment and suppress T cell responses via various mechanisms, whereas a reduction in their activities has been observed in autoimmune diseases or infections. It has been reported that the symptoms of various diseases, including malignant tumors, can be alleviated by targeting MDSCs. Moreover, MDSCs can contribute to patient resistance to therapy using immune checkpoint inhibitors. In line with these therapeutic approaches, diverse oligonucleotide-based molecules and small molecules have been evaluated for their therapeutic efficacy in several disease models via the modulation of MDSC activity. In the current review, MDSC-targeting oligonucleotides and small molecules are briefly summarized, and we highlight the immunomodulatory effects on MDSCs in a variety of disease models and the application of MDSC-targeting molecules for immuno-oncologic therapy.

Keywords

References

  1. Abraham, S. M., Lawrence, T., Kleiman, A., Warden, P., Medghalchi, M., Tuckermann, J., Saklatvala, J. and Clark, A. R. (2006) Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. J. Exp. Med. 203, 1883-1889. https://doi.org/10.1084/jem.20060336
  2. Ali, K., Soond, D. R., Pineiro, R., Hagemann, T., Pearce, W., Lim, E. L., Bouabe, H., Scudamore, C. L., Hancox, T., Maecker, H., Friedman, L., Turner, M., Okkenhaug, K. and Vanhaesebroeck, B. (2014) Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 510, 407-411. https://doi.org/10.1038/nature13444
  3. Anchoori, R. K., Karanam, B., Peng, S., Wang, J. W., Jiang, R., Tanno, T., Orlowski, R. Z., Matsui, W., Zhao, M., Rudek, M. A., Hung, C. F., Chen, X., Walters, K. J. and Roden, R. B. (2013) A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell 24, 791-805. https://doi.org/10.1016/j.ccr.2013.11.001
  4. Arguello, F., Alexander, M., Sterry, J. A., Tudor, G., Smith, E. M., Kalavar, N. T., Greene, J. F., Jr., Koss, W., Morgan, C. D., Stinson, S. F., Siford, T. J., Alvord, W. G., Klabansky, R. L. and Sausville, E. A. (1998) Flavopiridol induces apoptosis of normal lymphoid cells, causes immunosuppression, and has potent antitumor activity In vivo against human leukemia and lymphoma xenografts. Blood 91, 2482-2490.
  5. Azoury, S. C., Gilmore, R. C. and Shukla, V. (2016) Molecularly targeted agents and immunotherapy for the treatment of head and neck squamous cell cancer (HNSCC). Discov. Med. 21, 507-516.
  6. Bauer, R., Udonta, F., Wroblewski, M., Ben-Batalla, I., Santos, I. M., Taverna, F., Kuhlencord, M., Gensch, V., Pasler, S., Vinckier, S., Brandner, J. M., Pantel, K., Bokemeyer, C., Vogl, T., Roth, J., Carmeliet, P. and Loges, S. (2018) Blockade of myeloid-derived suppressor cell expansion with all-trans retinoic acid increases the efficacy of anti-angiogenic therapy. Cancer Res. 78, 3230-3232.
  7. Borriello, F., Iannone, R. and Marone, G. (2017) Histamine release from mast cells and basophils. Handb. Exp. Pharmacol. 241, 121-139. https://doi.org/10.1007/164_2017_18
  8. Bu, L. L., Yu, G. T., Deng, W. W., Mao, L., Liu, J. F., Ma, S. R., Fan, T. F., Hall, B., Kulkarni, A. B., Zhang, W. F. and Sun, Z. J. (2016) Targeting STAT3 signaling reduces immunosuppressive myeloid cells in head and neck squamous cell carcinoma. Oncoimmunology 5, e1130206. https://doi.org/10.1080/2162402X.2015.1130206
  9. Califano, J. A., Khan, Z., Noonan, K. A., Rudraraju, L., Zhang, Z., Wang, H., Goodman, S., Gourin, C. G., Ha, P. K., Fakhry, C., Saunders, J., Levine, M., Tang, M., Neuner, G., Richmon, J. D., Blanco, R., Agrawal, N., Koch, W. M., Marur, S., Weed, D. T., Serafini, P. and Borrello, I. (2015) Tadalafil augments tumor specific immunity in patients with head and neck squamous cell carcinoma. Clin. Cancer Res. 21, 30-38. https://doi.org/10.1158/1078-0432.CCR-14-1716
  10. Cantoni, C., Cignarella, F., Ghezzi, L., Mikesell, B., Bollman, B., Berrien-Elliott, M. M., Ireland, A. R., Fehniger, T. A., Wu, G. F. and Piccio, L. (2017) Mir-223 regulates the number and function of myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol. 133, 61-77. https://doi.org/10.1007/s00401-016-1621-6
  11. Cao, M. D., Xu, Y. L., Youn, J. I., Cabrera, R., Zhang, X. K., Gabrilovich, D., Nelson, D. R. and Liu, C. (2011) Kinase inhibitor Sorafenib modulates immunosuppressive cell populations in a murine liver cancer model. Lab. Invest. 91, 598-608. https://doi.org/10.1038/labinvest.2010.205
  12. Capuano, G., Rigamonti, N., Grioni, M., Freschi, M. and Bellone, M. (2009) Modulators of arginine metabolism support cancer immunosurveillance. BMC Immunol. 10, 1. https://doi.org/10.1186/1471-2172-10-1
  13. Cashen, A. F., Schiller, G. J., O'Donnell, M. R. and DiPersio, J. F. (2010) Multicenter, phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia. J. Clin. Oncol. 28, 556-561. https://doi.org/10.1200/JCO.2009.23.9178
  14. Chang, C. J., Yang, Y. H., Chiu, C. J., Lu, L. C., Liao, C. C., Liang, C. W., Hsu, C. H. and Cheng, A. L. (2018) Targeting tumor-infiltrating Ly6G(+) myeloid cells improves sorafenib efficacy in mouse orthotopic hepatocellular carcinoma. Int. J. Cancer 142, 1878-1889. https://doi.org/10.1002/ijc.31216
  15. Changelian, P. S., Flanagan, M. E., Ball, D. J., Kent, C. R., Magnuson, K. S., Martin, W. H., Rizzuti, B. J., Sawyer, P. S., Perry, B. D., Brissette, W. H., McCurdy, S. P., Kudlacz, E. M., Conklyn, M. J., Elliott, E. A., Koslov, E. R., Fisher, M. B., Strelevitz, T. J., Yoon, K., Whipple, D. A., Sun, J., Munchhof, M. J., Doty, J. L., Casavant, J. M., Blumenkopf, T. A., Hines, M., Brown, M. F., Lillie, B. M., Subramanyam, C., Shang-Poa, C., Milici, A. J., Beckius, G. E., Moyer, J. D., Su, C., Woodworth, T. G., Gaweco, A. S., Beals, C. R., Littman, B. H., Fisher, D. A., Smith, J. F., Zagouras, P., Magna, H. A., Saltarelli, M. J., Johnson, K. S., Nelms, L. F., Des Etages, S. G., Hayes, L. S., Kawabata, T. T., Finco-Kent, D., Baker, D. L., Larson, M., Si, M. S., Paniagua, R., Higgins, J., Holm, B., Reitz, B., Zhou, Y. J., Morris, R. E., O’Shea, J. J. and Borie, D. C. (2003) Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302, 875-878. https://doi.org/10.1126/science.1087061
  16. Chen, J., Deng, C. Y., Shi, Q. M., Jiang, J., Zhang, Y. B., Shan, W. and Sun, W. M. (2013) CpG oligodeoxynucleotide induces bone marrow precursor cells into myeloid-derived suppressor cells. Mol. Med. Rep. 8, 1149-1154. https://doi.org/10.3892/mmr.2013.1655
  17. Chen, S., Huang, A., Chen, H., Yang, Y., Xia, F., Jin, L. and Zhang, J. (2016) miR-34a inhibits the apoptosis of MDSCs by suppressing the expression of N-myc. Immunol. Cell Biol. 94, 563-572. https://doi.org/10.1038/icb.2016.11
  18. Chen, S., Zhang, Y., Kuzel, T. M. and Zhang, B. (2015a) Regulating tumor myeloid-derived suppressor cells by microRNAs. Cancer Cell Microenviron. 2, e637.
  19. Chen, S. Q., Wang, L., Fan, J., Ye, C., Dominguez, D., Zhang, Y., Curiel, T. J., Fang, D. Y., Kuzel, T. M. and Zhang, B. (2015b) Host miR155 promotes tumor growth through a myeloid-derived suppressor cell-dependent mechanism. Cancer Res. 75, 519-531. https://doi.org/10.1158/0008-5472.CAN-14-2331
  20. Cheng, P., Corzo, C. A., Luetteke, N., Yu, B., Nagaraj, S., Bui, M. M., Ortiz, M., Nacken, W., Sorg, C., Vogl, T., Roth, J. and Gabrilovich, D. I. (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J. Exp. Med. 205, 2235-2249. https://doi.org/10.1084/jem.20080132
  21. Clezardin, P., Ebetino, F. H. and Fournier, P. G. J. (2005) Bisphosphonates and cancer-induced bone disease: beyond their antiresorptive activity. Cancer Res. 65, 4971-4974. https://doi.org/10.1158/0008-5472.CAN-05-0264
  22. Cushing, T. D., Metz, D. P., Whittington, D. A. and McGee, L. R. (2012) PI3Kdelta and PI3Kgamma as targets for autoimmune and inflammatory diseases. J. Med. Chem. 55, 8559-8581. https://doi.org/10.1021/jm300847w
  23. Davis, R. J., Moore, E. C., Clavijo, P. E., Friedman, J., Cash, H., Chen, Z., Silvin, C., Van Waes, C. and Allen, C. (2017) Anti-PD-L1 efficacy can be enhanced by inhibition of myeloid-derived suppressor cells with a selective inhibitor of PI3K delta/gamma. Cancer Res. 77, 2607-2619. https://doi.org/10.1158/0008-5472.CAN-16-2534
  24. Deng, Y. T., Yang, J., Luo, F. F., Qian, J., Liu, R. H., Zhang, D., Yu, H. X. and Chu, Y. W. (2018) mTOR-mediated glycolysis contributes to the enhanced suppressive function of murine tumor-infiltrating monocytic myeloid-derived suppressor cells. Cancer Immunol. Immunother. 67, 1355-1364. https://doi.org/10.1007/s00262-018-2177-1
  25. Doedens, A. L., Stockmann, C., Rubinstein, M. P., Liao, D., Zhang, N., DeNardo, D. G., Coussens, L. M., Karin, M., Goldrath, A. W. and Johnson, R. S. (2010) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res. 70, 7465-7475. https://doi.org/10.1158/0008-5472.CAN-10-1439
  26. Draghiciu, O., Nijman, H. W., Hoogeboom, B. N., Meijerhof, T. and Daemen, T. (2015) Sunitinib depletes myeloid-derived suppressor cells and synergizes with a cancer vaccine to enhance antigenspecific immune responses and tumor eradication. Oncoimmunology 4, e989764. https://doi.org/10.4161/2162402X.2014.989764
  27. Du Four, S., Maenhout, S. K., De Pierre, K., Renmans, D., Niclou, S. P., Thielemans, K., Neyns, B. and Aerts, J. L. (2015) Axitinib increases the infiltration of immune cells and reduces the suppressive capacity of monocytic MDSCs in an intracranial mouse melanoma model. Oncoimmunology 4, e998107. https://doi.org/10.1080/2162402X.2014.998107
  28. El Gazzar, M. (2014) microRNAs as potential regulators of myeloidderived suppressor cell expansion. Innate Immunity 20, 227-238. https://doi.org/10.1177/1753425913489850
  29. Engelman, J. A. (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9, 550-562. https://doi.org/10.1038/nrc2664
  30. Eriksson, E., Wenthe, J., Irenaeus, S., Loskog, A. and Ullenhag, G. (2016) Gemcitabine reduces MDSCs, tregs and TGF beta-1 while restoring the teff/treg ratio in patients with pancreatic cancer. J. Transl. Med. 14, 282. https://doi.org/10.1186/s12967-016-1037-z
  31. Espagnolle, N., Barron, P., Mandron, M., Blanc, I., Bonnin, J., Agnel, M., Kerbelec, E., Herault, J. P., Savi, P., Bono, F. and Alam, A. (2014) Specific inhibition of the VEGFR-3 tyrosine kinase by SAR131675 reduces peripheral and tumor associated immunosuppressive myeloid cells. Cancers (Basel) 6, 472-490. https://doi.org/10.3390/cancers6010472
  32. Finke, J., Ko, J., Rini, B., Rayman, P., Ireland, J. and Cohen, P. (2011) MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int. Immunopharm. 11, 856-861. https://doi.org/10.1016/j.intimp.2011.01.030
  33. Flaxenburg, J. A., Melter, M., Lapchak, P. H., Briscoe, D. M. and Pal, S. (2004) The CD40-induced signaling pathway in endothelial cells resulting in the overexpression of vascular endothelial growth factor involves Ras and phosphatidylinositol 3-kinase. J. Immunol. 172, 7503-7509. https://doi.org/10.4049/jimmunol.172.12.7503
  34. Freston, J. W. (1982) Cimetidine. I. Developments, pharmacology, and efficacy. Ann. Intern. Med. 97, 573-580. https://doi.org/10.7326/0003-4819-97-4-573
  35. Gabrilovich, D. I. and Nagaraj, S. (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162-174. https://doi.org/10.1038/nri2506
  36. Gabrilovich, D. I., Ostrand-Rosenberg, S. and Bronte, V. (2012) Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253-268. https://doi.org/10.1038/nri3175
  37. Ghofrani, H. A., Voswinckel, R., Reichenberger, F., Olschewski, H., Haredza, P., Karadas, B., Schermuly, R. T., Weissmann, N., Seeger, W. and Grimminger, F. (2004) Differences in hemodynamic and oxygenation responses to three different phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension: a randomized prospective study. J. Am. Coll. Cardiol. 44, 1488-1496. https://doi.org/10.1016/S0735-1097(04)01362-2
  38. Grauers Wiktorin, H., Nilsson, M. S., Kiffin, R., Sander, F. E., Lenox, B., Rydstrom, A., Hellstrand, K. and Martner, A. (2018) Histamine targets myeloid-derived suppressor cells and improves the anti-tumor efficacy of PD-1/PD-L1 checkpoint blockade. Cancer Immunol. Immunother. 68, 163-174.
  39. Greenwood, J., Steinman, L. and Zamvil, S. S. (2006) Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat. Rev. Immunol. 6, 358-370. https://doi.org/10.1038/nri1839
  40. Groth, C., Hu, X., Weber, R., Fleming, V., Altevogt, P., Utikal, J. and Umansky, V. (2018) Immunosuppression mediated by myeloidderived suppressor cells (MDSCs) during tumour progression. Br. J. Cancer 120, 16-25.
  41. Guha, P., Gardell, J., Darpolor, J., Cunetta, M., Lima, M., Miller, G., Espat, N. J., Junghans, R. P. and Katz, S. C. (2019) STAT3 inhibition induces Bax-dependent apoptosis in liver tumor myeloid-derived suppressor cells. Oncogene 38, 533-548. https://doi.org/10.1038/s41388-018-0449-z
  42. Guislain, A., Gadiot, J., Kaiser, A., Jordanova, E. S., Broeks, A., Sanders, J., van Boven, H., de Gruijl, T. D., Haanen, J. B., Bex, A. and Blank, C. U. (2015) Sunitinib pretreatment improves tumor-infiltrating lymphocyte expansion by reduction in intratumoral content of myeloid-derived suppressor cells in human renal cell carcinoma. Cancer Immunol. Immunother. 64, 1241-1250. https://doi.org/10.1007/s00262-015-1735-z
  43. Guo, X., Qiu, W., Wang, J., Liu, Q., Qian, M., Wang, S., Zhang, Z., Gao, X., Chen, Z., Guo, Q., Xu, J., Xue, H. and Li, G. (2018a) Glioma exosomes mediate the expansion and function of myeloid-derived suppressor cells through microRNA-29a/Hbp1 and microRNA-92a/ Prkar1a pathways. Int. J. Cancer 144, 3111-3126. https://doi.org/10.1002/ijc.32052
  44. Guo, X. F., Qiu, W., Liu, Q. L., Qian, M. Y., Wang, S. B., Zhang, Z. P., Gao, X., Chen, Z. H., Xue, H. and Li, G. (2018b) Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloidderived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways. Oncogene 37, 4239-4259. https://doi.org/10.1038/s41388-018-0261-9
  45. Hara, E., Smith, R., Parry, D., Tahara, H., Stone, S. and Peters, G. (1996) Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol. Cell. Biol. 16, 859-867. https://doi.org/10.1128/MCB.16.3.859
  46. Hashimoto, A., Gao, C., Mastio, J., Kossenkov, A., Abrams, S. I., Purandare, A. V., Desilva, H., Wee, S., Hunt, J., Jure-Kunkel, M. and Gabrilovich, D. I. (2018) Inhibition of casein kinase 2 disrupts differentiation of myeloid cells in cancer and enhances the efficacy of immunotherapy in mice. Cancer Res. 78, 5644-5655. https://doi.org/10.1158/0008-5472.CAN-18-1229
  47. Hegde, V. L., Tomar, S., Jackson, A., Rao, R., Yang, X., Singh, U. P., Singh, N. P., Nagarkatti, P. S. and Nagarkatti, M. (2013) Distinct microRNA expression profile and targeted biological pathways in functional myeloid-derived suppressor cells induced by delta9-tetrahydrocannabinol in vivo: regulation of CCAAT/enhancer-binding protein alpha by microRNA-690. J. Biol. Chem. 288, 36810-36826. https://doi.org/10.1074/jbc.M113.503037
  48. Heine, A., Flores, C., Gevensleben, H., Diehl, L., Heikenwalder, M., Ringelhan, M., Janssen, K.-P., Nitsche, U., Garbi, N., Brossart, P., Knolle, P. A., Kurts, C. and Hochst, B. (2017) Targeting myeloid derived suppressor cells with all-trans retinoic acid is highly timedependent in therapeutic tumor vaccination. Oncoimmunology 6, e1338995. https://doi.org/10.1080/2162402X.2017.1338995
  49. Heine, A., Schilling, J., Grunwald, B., Kruger, A., Gevensleben, H., Held, S. A. E., Garbi, N., Kurts, C., Brossart, P., Knolle, P., Diehl, L. and Hochst, B. (2016) The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib. Cancer Immunol. Immunother. 65, 273-282. https://doi.org/10.1007/s00262-015-1790-5
  50. Hojjat-Farsangi, M. (2014) Small-molecule inhibitors of the receptor tyrosine kinases: promising tools for targeted cancer therapies. Int. J. Mol. Sci. 15, 13768-13801. https://doi.org/10.3390/ijms150813768
  51. Hossain, F., Majumder, S., Ucar, D. A., Rodriguez, P. C., Golde, T. E., Minter, L. M., Osborne, B. A. and Miele, L. (2018) Notch signaling in myeloid cells as a regulator of tumor immune responses. Front. Immunol. 9, 1288. https://doi.org/10.3389/fimmu.2018.01288
  52. Hou, Y., Feng, Q., Xu, M., Li, G. S., Liu, X. N., Sheng, Z., Zhou, H., Ma, J., Wei, Y., Sun, Y. X., Yu, Y. Y., Qiu, J. H., Shao, L. L., Liu, X. G., Hou, M. and Peng, J. (2016) High-dose dexamethasone corrects impaired myeloid-derived suppressor cell function via Ets1 in immune thrombocytopenia. Blood 127, 1587-1597. https://doi.org/10.1182/blood-2015-10-674531
  53. Huang, A. F., Zhang, H. T., Chen, S., Xia, F., Yang, Y., Dong, F. L., Sun, D., Xiong, S. D. and Zhang, J. P. (2014) miR-34a expands myeloid-derived suppressor cells via apoptosis inhibition. Exp. Cell Res. 326, 259-266. https://doi.org/10.1016/j.yexcr.2014.04.010
  54. Huber, V., Vallacchi, V., Fleming, V., Hu, X., Cova, A., Dugo, M., Shahaj, E., Sulsenti, R., Vergani, E., Filipazzi, P., De Laurentiis, A., Lalli, L., Di Guardo, L., Patuzzo, R., Vergani, B., Casiraghi, E., Cossa, M., Gualeni, A., Bollati, V., Arienti, F., De Braud, F., Mariani, L., Villa, A., Altevogt, P., Umansky, V., Rodolfo, M. and Rivoltini, L. (2018) Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. J. Clin. Invest. 128, 5505-5516. https://doi.org/10.1172/JCI98060
  55. Jeon, C., Kang, S., Park, S., Lim, K., Hwang, K. W. and Min, H. (2011) T cell stimulatory effects of Korean red ginseng through modulation of myeloid-derived suppressor cells. J. Ginseng Res. 35, 462-470. https://doi.org/10.5142/jgr.2011.35.4.462
  56. Kostlin, N., Kugel, H., Spring, B., Leiber, A., Marme, A., Henes, M., Rieber, N., Hartl, D., Poets, C. F. and Gille, C. (2014) Granulocytic myeloid derived suppressor cells expand in human pregnancy and modulate T-cell responses. Eur. J. Immunol. 44, 2582-2591. https://doi.org/10.1002/eji.201344200
  57. Kanasty, R., Dorkin, J. R., Vegas, A. and Anderson, D. (2013) Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967-977. https://doi.org/10.1038/nmat3765
  58. Kim, K., Skora, A. D., Li, Z. B., Liu, Q., Tam, A. J., Blosser, R. L., Diaz, L. A., Papadopoulos, N., Kinzler, K. W., Vogelstein, B. and Zhou, S. B. (2014) Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc. Natl. Acad. Sci. U.S.A. 111, 11774-11779. https://doi.org/10.1073/pnas.1410626111
  59. Kim, S. H., Li, M., Trousil, S., Zhang, Y., Pasca di Magliano, M., Swanson, K. D. and Zheng, B. (2017) Phenformin inhibits myeloid-derived suppressor cells and enhances the anti-tumor activity of PD-1 blockade in melanoma. J. Invest. Dermatol. 137, 1740-1748. https://doi.org/10.1016/j.jid.2017.03.033
  60. Klinman, D. M. (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol. 4, 249-259. https://doi.org/10.1038/nri1329
  61. Ko, H. J. and Kim, Y. J. (2016) Signal transducer and activator of transcription proteins: regulators of myeloid-derived suppressor cellmediated immunosuppression in cancer. Arch. Pharm. Res. 39, 1597-1608. https://doi.org/10.1007/s12272-016-0822-9
  62. Ko, J. S., Rayman, P., Ireland, J., Swaidani, S., Li, G. Q., Bunting, K. D., Rini, B., Finke, J. H. and Cohen, P. A. (2010) Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res. 70, 3526-3536. https://doi.org/10.1158/0008-5472.CAN-09-3278
  63. Ko, J. S., Zea, A. H., Rin, B. I., Ireland, J. L., Elson, P., Cohen, P., Golshayan, A., Rayman, P. A., Wood, L., Garcia, J., Dreicer, R., Bukowski, R. and Finke, J. H. (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15, 2148-2157. https://doi.org/10.1158/1078-0432.CCR-08-1332
  64. Kremmyda, L.-S., Tvrzicka, E., Stankova, B. and Zak, A. (2011) Fatty acids as biocompounds: their role in human metabolism, health and disease: a review. part 2: fatty acid physiological roles and applications in human health and disease. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 155, 195-218. https://doi.org/10.5507/bp.2011.052
  65. Kuchen, S., Resch, W., Yamane, A., Kuo, N., Li, Z., Chakraborty, T., Wei, L., Laurence, A., Yasuda, T., Peng, S., Hu-Li, J., Lu, K., Dubois, W., Kitamura, Y., Charles, N., Sun, H. W., Muljo, S., Schwartzberg, P. L., Paul, W. E., O’Shea, J., Rajewsky, K. and Casellas, R. (2010) Regulation of microRNA expression and abundance during lymphopoiesis. Immunity 32, 828-839. https://doi.org/10.1016/j.immuni.2010.05.009
  66. Ledo, A. M., Sasso, M. S., Bronte, V., Marigo, I., Boyd, B. J., Garcia-Fuentes, M. and Alonso, M. J. (2018) Co-delivery of RNAi and chemokine by polyarginine nanocapsules enables the modulation of myeloid-derived suppressor cells. J. Control. Release 295, 60-73. https://doi.org/10.1016/j.jconrel.2018.12.041
  67. Lee, B. R., Kwon, B. E., Hong, E. H., Shim, A., Song, J. H., Kim, H. M., Chang, S. Y., Kim, Y. J., Kweon, M. N., Youn, J. I. and Ko, H. J. (2016) Interleukin-10 attenuates tumour growth by inhibiting interleukin-6/signal transducer and activator of transcription 3 signalling in myeloid-derived suppressor cells. Cancer Lett. 381, 156-164. https://doi.org/10.1016/j.canlet.2016.07.012
  68. Lei, A., Yang, Q., Li, X., Chen, H., Shi, M., Xiao, Q., Cao, Y., He, Y. and Zhou, J. (2016) Atorvastatin promotes the expansion of myeloidderived suppressor cells and attenuates murine colitis. Immunology 149, 432-446. https://doi.org/10.1111/imm.12662
  69. Li, A., Barsoumian, H. B., Schoenhals, J. E., Cushman, T. R., Caetano, M. S., Wang, X., Valdecanas, D. R., Niknam, S., Younes, A. I., Li, G., Woodward, W. A., Cortez, M. A. and Welsh, J. W. (2018a) Indoleamine 2,3-dioxygenase 1 inhibition targets anti-PD1-resistant lung tumors by blocking myeloid-derived suppressor cells. Cancer Lett. 431, 54-63. https://doi.org/10.1016/j.canlet.2018.05.005
  70. Li, J., Yu, S., Ying, J., Shi, T. and Wang, P. (2017) Resveratrol prevents ROS-induced apoptosis in high glucose-treated retinal capillary endothelial cells via the activation of AMPK/Sirt1/PGC-$1{\alpha}$ pathway. Oxid. Med. Cell. Longev. 2017, 7584691. https://doi.org/10.1155/2017/7584691
  71. Li, L., Wang, L., Li, J., Fan, Z., Yang, L., Zhang, Z., Zhang, C., Yue, D., Qin, G., Zhang, T., Li, F., Chen, X., Ping, Y., Wang, D., Gao, Q., He, Q., Huang, L., Li, H., Huang, J., Zhao, X., Xue, W., Sun, Z., Lu, J., Yu, J. J., Zhao, J., Zhang, B. and Zhang, Y. (2018b) Metformininduced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. Cancer Res. 78, 1779-1791. https://doi.org/10.1158/0008-5472.CAN-17-2460
  72. Li, L., Zhang, J., Diao, W., Wang, D., Wei, Y., Zhang, C. Y. and Zen, K. (2014) MicroRNA-155 and microRNA-21 promote the expansion of functional myeloid-derived suppressor cells. J. Immunol. 192, 1034-1043. https://doi.org/10.4049/jimmunol.1301309
  73. Lin, Y., Wang, B. S., Shan, W., Tan, Y. M., Feng, J. J., Xu, L., Wang, L. M. M., Han, B. Q., Zhang, M. M., Yu, J., Yu, X. H. and Huang, H. (2018) mTOR inhibitor rapamycin induce polymorphonuclear myeloid-derived suppressor cells mobilization and function in protecting against acute graft-versus-host disease after bone marrow transplantation. Clin. Immunol. 187, 122-131. https://doi.org/10.1016/j.clim.2017.11.005
  74. Liu, L., Ye, T. H., Han, Y. P., Song, H., Zhang, Y. K., Xia, Y., Wang, N. Y., Xiong, Y., Song, X. J., Zhu, Y. X., Li, D. L., Zeng, J., Ran, K., Peng, C. T., Wei, Y. Q. and Yu, L. T. (2014) Reductions in myeloid-derived suppressor cells and lung metastases using AZD4547 treatment of a metastatic murine breast tumor model. Cell. Phys. Biochem. 33, 633-645. https://doi.org/10.1159/000358640
  75. Liu, Q., Zhang, M., Jiang, X., Zhang, Z., Dai, L., Min, S., Wu, X., He, Q., Liu, J., Zhang, Y., Zhang, Z. and Yang, R. (2011) miR-223 suppresses differentiation of tumor-induced CD11b(+) Gr1(+) myeloidderived suppressor cells from bone marrow cells. Int. J. Cancer 129, 2662-2673. https://doi.org/10.1002/ijc.25921
  76. Liu, Y., Lai, L., Chen, Q., Song, Y., Xu, S., Ma, F., Wang, X., Wang, J., Yu, H., Cao, X. and Wang, Q. (2012) MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloidderived suppressor cells via targeting of PTEN. J. Immunol. 188, 5500-5510. https://doi.org/10.4049/jimmunol.1103505
  77. Liu, Y. F., Wei, J. Y., Shi, M. H., Jiang, H. and Zhou, J. (2016) Glucocorticoid induces hepatic steatosis by inhibiting activating transcription factor 3 (ATF3)/S100A9 protein signaling in granulocytic myeloidderived suppressor cells. J. Biol. Chem. 291, 21771-21785. https://doi.org/10.1074/jbc.M116.726364
  78. Liu, Y. F., Zhuang, K. H., Chen, B., Li, P. W., Zhou, X., Jiang, H., Zhong, L. M. and Liu, F. B. (2018) Expansion and activation of monocyticmyeloid-derived suppressor cell via STAT3/arginase-I signaling in patients with ankylosing spondylitis. Arthritis Res. Ther. 20, 168. https://doi.org/10.1186/s13075-018-1654-4
  79. Long, A. H., Highfill, S. L., Cui, Y., Smith, J. P., Walker, A. J., Ramakrishna, S., El-Etriby, R., Galli, S., Tsokos, M. G., Orentas, R. J. and Mackall, C. L. (2016) Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol. Res. 4, 869-880. https://doi.org/10.1158/2326-6066.CIR-15-0230
  80. Maenhout, S. K., Du Four, S., Corthals, J., Neyns, B., Thielemans, K. and Aerts, J. L. (2014) AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloidderived suppressor cells. Oncotarget 5, 6801-6815. https://doi.org/10.18632/oncotarget.2254
  81. Mandelker, D., Gabelli, S. B., Schmidt-Kittler, O., Zhu, J., Cheong, I., Huang, C. H., Kinzler, K. W., Vogelstein, B. and Amzel, L. M. (2009) A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Proc. Natl. Acad. Sci. U.S.A. 106, 16996-17001. https://doi.org/10.1073/pnas.0908444106
  82. Mao, L., Zhao, Z. L., Yu, G. T., Wu, L., Deng, W. W., Li, Y. C., Liu, J. F., Bu, L. L., Liu, B., Kulkarni, A. B., Zhang, W. F., Zhang, L. and Sun, Z. J. (2018) ${\gamma}$-Secretase inhibitor reduces immunosuppressive cells and enhances tumour immunity in head and neck squamous cell carcinoma. Int. J. Cancer 142, 999-1009. https://doi.org/10.1002/ijc.31115
  83. Marigo, I., Bosio, E., Solito, S., Mesa, C., Fernandez, A., Dolcetti, L., Ugel, S., Sonda, N., Bicciato, S., Falisi, E., Calabrese, F., Basso, G., Zanovello, P., Cozzi, E., Mandruzzato, S. and Bronte, V. (2010) Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32, 790-802. https://doi.org/10.1016/j.immuni.2010.05.010
  84. Martin, R. K., Saleem, S. J., Folgosa, L., Zellner, H. B., Damle, S. R., Nguyen, G. K., Ryan, J. J., Bear, H. D., Irani, A. M. and Conrad, D. H. (2014) Mast cell histamine promotes the immunoregulatory activity of myeloid-derived suppressor cells. J. Leukoc. Biol. 96, 151-159. https://doi.org/10.1189/jlb.5A1213-644R
  85. McClure, C., Brudecki, L., Ferguson, D. A., Yao, Z. Q., Moorman, J. P., McCall, C. E. and El Gazzar, M. (2014) MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis. Infect. Immun. 82, 3816-3825. https://doi.org/10.1128/IAI.01495-14
  86. Melani, C., Sangaletti, S., Barazzetta, F. M., Werb, Z. and Colombo, M. P. (2007) Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 67, 11438-11446. https://doi.org/10.1158/0008-5472.CAN-07-1882
  87. Mikyskova, R., Indrova, M., Vlkova, V., Bieblova, J., Simova, J., Parackova, Z., Pajtasz-Piasecka, E., Rossowska, J. and Reinis, M. (2014) DNA demethylating agent 5-azacytidine inhibits myeloidderived suppressor cells induced by tumor growth and cyclophosphamide treatment. J. Leukoc. Biol. 95, 743-753. https://doi.org/10.1189/jlb.0813435
  88. Moon, Y. W., Hajjar, J., Hwu, P. and Naing, A. (2015) Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J. Immunother. Cancer 3, 51. https://doi.org/10.1186/s40425-015-0094-9
  89. Motzer, R. J., Rini, B. I., Bukowski, R. M., Curti, B. D., George, D. J., Hudes, G. R., Redman, B. G., Margolin, K. A., Merchan, J. R., Wilding, G., Ginsberg, M. S., Bacik, J., Kim, S. T., Baum, C. M. and Michaelson, M. D. (2006) Sunitinib in patients with metastatic renal cell carcinoma. JAMA 295, 2516-2524. https://doi.org/10.1001/jama.295.21.2516
  90. Nakamura, T., Nakao, T., Yoshimura, N. and Ashihara, E. (2015) Rapamycin prolongs cardiac allograft survival in a mouse model by inducing myeloid-derived suppressor cells. Am. J. Transplant. 15, 2364-2377. https://doi.org/10.1111/ajt.13276
  91. Nam, S., Kang, K., Cha, J. S., Kim, J. W., Lee, H. G., Kim, Y., Yang, Y., Lee, M. S. and Lim, J. S. (2016) Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function. J. Leukoc. Biol. 100, 1273-1284. https://doi.org/10.1189/jlb.1A0215-068RR
  92. Nam, S., Lee, A., Lim, J. and Lim, J.-S. (2019) Analysis of the expression and regulation of PD-1 protein on the surface of myeloid-derived suppressor cells (MDSCs). Biomol. Ther. (Seoul) 27, 63-70. https://doi.org/10.4062/biomolther.2018.201
  93. Nandi, P., Girish, G. V., Majumder, M., Xin, X., Tutunea-Fatan, E. and Lala, P. K. (2017) PGE2 promotes breast cancer-associated lymphangiogenesis by activation of EP4 receptor on lymphatic endothelial cells. BMC Cancer 17, 11. https://doi.org/10.1186/s12885-016-3018-2
  94. Nefedova, Y., Fishman, M., Sherman, S., Wang, X., Beg, A. A. and Gabrilovich, D. I. (2007) Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res. 67, 11021-11028. https://doi.org/10.1158/0008-5472.CAN-07-2593
  95. Nefedova, Y., Nagaraj, S., Rosenbauer, A., Muro-Cacho, C., Sebti, S. M. and Gabrilovich, D. I. (2005) Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res. 65, 9525-9535. https://doi.org/10.1158/0008-5472.CAN-05-0529
  96. Nishimura, K., Saegusa, J., Matsuki, F., Akashi, K., Kageyama, G. and Morinobu, A. (2015) Tofacitinib facilitates the expansion of myeloidderived suppressor cells and ameliorates arthritis in SKG mice. Arthritis Rheumatol. 67, 893-902. https://doi.org/10.1002/art.39007
  97. Noman, M. Z., Janji, B., Hu, S., Wu, J. C., Martelli, F., Bronte, V. and Chouaib, S. (2015) Tumor-promoting effects of myeloid-derived suppressor cells are potentiated by hypoxia-induced expression of miR-210. Cancer Res. 75, 3771-3787. https://doi.org/10.1158/0008-5472.CAN-15-0405
  98. Noonan, K. A., Ghosh, N., Rudraraju, L., Bui, M. and Borrello, I. (2014) Targeting immune suppression with PDE5 inhibition in end-stage multiple myeloma. Cancer Immunol. Res. 2, 725-731. https://doi.org/10.1158/2326-6066.CIR-13-0213
  99. O’Neill, L. A. J. and Hardie, D. G. (2013) Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493, 346-355. https://doi.org/10.1038/nature11862
  100. Okuma, A., Hanyu, A., Watanabe, S. and Hara, E. (2017) p16(Ink4a) and p21(Cip1/Waf1) promote tumour growth by enhancing myeloid-derived suppressor cells chemotaxis. Nat. Commun. 8, 2050. https://doi.org/10.1038/s41467-017-02281-x
  101. Orillion, A., Hashimoto, A., Damayanti, N., Shen, L., Adelaiye-Ogala, R., Arisa, S., Chintala, S., Ordentlich, P., Kao, C., Elzey, B., Gabrilovich, D. and Pili, R. (2017) Entinostat neutralizes myeloid-derived suppressor cells and enhances the antitumor effect of PD-1 inhibition in murine models of lung and renal cell carcinoma. Clin. Cancer Res. 23, 5187-5201. https://doi.org/10.1158/1078-0432.CCR-17-0741
  102. Orucevic, A., Bechberger, J., Green, A. M., Shapiro, R. A., Billiar, T. R. and Lala, P. K. (1999) Nitric-oxide production by murine mammary adenocarcinoma cells promotes tumor-cell invasiveness. Int. J. Cancer 81, 889-896. https://doi.org/10.1002/(SICI)1097-0215(19990611)81:6<889::AID-IJC9>3.0.CO;2-2
  103. Pan, P. Y., Ma, G., Weber, K. J., Ozao-Choy, J., Wang, G., Yin, B., Divino, C. M. and Chen, S. H. (2010) Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res. 70, 99-108. https://doi.org/10.1158/0008-5472.CAN-09-1882
  104. Pan, T., Zhong, L., Wu, S., Cao, Y., Yang, Q., Cai, Z., Cai, X., Zhao, W., Ma, N., Zhang, W., Zhang, H. and Zhou, J. (2016) 17-Oestradiol enhances the expansion and activation of myeloid-derived suppressor cells via signal transducer and activator of transcription (STAT)-3 signalling in human pregnancy. Clin. Exp. Immunol. 185, 86-97. https://doi.org/10.1111/cei.12790
  105. Piazza, F., Manni, S., Ruzzene, M., Pinna, L. A., Gurrieri, C. and Semenzato, G. (2012) Protein kinase CK2 in hematologic malignancies: reliance on a pivotal cell survival regulator by oncogenic signaling pathways. Leukemia 26, 1174-1179. https://doi.org/10.1038/leu.2011.385
  106. Qin, G., Lian, J., Huang, L., Zhao, Q., Liu, S., Zhang, Z., Chen, X., Yue, D., Li, L., Li, F., Wang, L., Umansky, V., Zhang, B., Yang, S. and Zhang, Y. (2018) Metformin blocks myeloid-derived suppressor cell accumulation through AMPK-DACH1-CXCL1 axis. Oncoimmunology 7, e1442167. https://doi.org/10.1080/2162402X.2018.1442167
  107. Rodriguez, P. C., Hernandez, C. P., Quiceno, D., Dubinett, S. M., Zabaleta, J., Ochoa, J. B., Gilbert, J. and Ochoa, A. C. (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J. Exp. Med. 202, 931-939. https://doi.org/10.1084/jem.20050715
  108. Rong, Y., Yuan, C. H., Qu, Z., Zhou, H., Guan, Q., Yang, N., Leng, X. H., Bu, L., Wu, K. and Wang, F. B. (2016) Doxorubicin resistant cancer cells activate myeloid-derived suppressor cells by releasing PGE2. Sci. Rep. 6, 23824. https://doi.org/10.1038/srep23824
  109. Roskoski, R., Jr. (2007) Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem. Biophys. Res. Commun. 356, 323-328. https://doi.org/10.1016/j.bbrc.2007.02.156
  110. Sawant, A., Schafer, C. C., Jin, T. H., Zmijewski, J., Tse, H. M., Roth, J., Sun, Z. H., Siegal, G. P., Thannickal, V. J., Grant, S. C., Ponnazhagan, S. and Deshane, J. S. (2013) Enhancement of antitumor immunity in lung cancer by targeting myeloid-derived suppressor cell pathways. Cancer Res. 73, 6609-6620. https://doi.org/10.1158/0008-5472.CAN-13-0987
  111. Schacke, H., Docke, W. D. and Asadullah, K. (2002) Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther. 96, 23-43. https://doi.org/10.1016/S0163-7258(02)00297-8
  112. Schmid, M. C., Avraamides, C. J., Dippold, H. C., Franco, I., Foubert, P., Ellies, L. G., Acevedo, L. M., Manglicmot, J. R., Song, X., Wrasidlo, W., Blair, S. L., Ginsberg, M. H., Cheresh, D. A., Hirsch, E., Field, S. J. and Varner, J. A. (2011) Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell 19, 715-727. https://doi.org/10.1016/j.ccr.2011.04.016
  113. Schwartz, D. M., Kanno, Y., Villarino, A., Ward, M., Gadina, M. and O'Shea, J. J. (2017) JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 17, 78.
  114. Scuto, A., Krejci, P., Popplewell, L., Wu, J., Wang, Y., Kujawski, M., Kowolik, C., Xin, H., Chen, L., Wang, Y., Kretzner, L., Yu, H., Wilcox, W. R., Yen, Y., Forman, S. and Jove, R. (2011) The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival. Leukemia 25, 538-550. https://doi.org/10.1038/leu.2010.289
  115. Serafini, P., Meckel, K., Kelso, M., Noonan, K., Califano, J., Koch, W., Dolcetti, L., Bronte, V. and Borrello, I. (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J. Exp. Med. 203, 2691-2702. https://doi.org/10.1084/jem.20061104
  116. Setten, R. L., Rossi, J. J. and Han, S. P. (2019) The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 18, 421-446. https://doi.org/10.1038/s41573-019-0017-4
  117. Shen, L., Orillion, A. and Pili, R. (2016) Histone deacetylase inhibitors as immunomodulators in cancer therapeutics. Epigenomics 8, 415-428. https://doi.org/10.2217/epi.15.118
  118. Shi, G., Li, D., Ren, J., Li, X., Wang, T., Dou, H. and Hou, Y. (2019) mTOR inhibitor INK128 attenuates dextran sodium sulfate-induced colitis by promotion of MDSCs on Treg cell expansion. J. Cell. Physiol. 234, 1618-1629. https://doi.org/10.1002/jcp.27032
  119. Shirota, Y., Shirota, H. and Klinman, D. M. (2012) Intratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. J. Immunol. 188, 1592-1599. https://doi.org/10.4049/jimmunol.1101304
  120. Singh, U. P., Singh, N. P., Singh, B., Hofseth, L. J., Taub, D. D., Price, R. L., Nagarkatti, M. and Nagarkatti, P. S. (2012) Role of resveratrol-induced CD11b(+) Gr-1(+) myeloid derived suppressor cells (MDSCs) in the reduction of CXCR3(+) T cells and amelioration of chronic colitis in IL-10(-/-) mice. Brain Behav. Immun. 26, 72-82. https://doi.org/10.1016/j.bbi.2011.07.236
  121. Sinha, P., Clements, V. K., Fulton, A. M. and Ostrand-Rosenberg, S. (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res. 67, 4507-4513. https://doi.org/10.1158/0008-5472.CAN-06-4174
  122. Sinha, P., Okoro, C., Foell, D., Freeze, H. H., Ostrand-Rosenberg, S. and Srikrishna, G. (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J. Immunol. 181, 4666-4675. https://doi.org/10.4049/jimmunol.181.7.4666
  123. Soong, R. S., Anchoori, R. K., Yang, B., Yang, A., Tseng, S. H., He, L. M., Tsai, Y. C., Roden, R. B. S. and Hung, C. F. (2016) RPN13/ADRM1 inhibitor reverses immunosuppression by myeloid-derived suppressor cells. Oncotarget 7, 68489-68502. https://doi.org/10.18632/oncotarget.12095
  124. Suzuki, E. (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 11, 6713-6721. https://doi.org/10.1158/1078-0432.CCR-05-0883
  125. Tobin, R. P., Jordan, K. R., Robinson, W. A., Davis, D., Borges, V. F., Gonzalez, R., Lewis, K. D. and McCarter, M. D. (2018) Targeting myeloid-derived suppressor cells using all-trans retinoic acid in melanoma patients treated with Ipilimumab. Int. Immunopharm. 63, 282-291. https://doi.org/10.1016/j.intimp.2018.08.007
  126. Trikha, P., Plews, R. L., Stiff, A., Gautam, S., Hsu, V., Abood, D., Wesolowski, R., Landi, I., Mo, X., Phay, J., Chen, C.-S., Byrd, J., Caligiuri, M., Tridandapani, S. and Carson, W. E. (2016) Targeting myeloid-derived suppressor cells using a novel adenosine monophosphate-activated protein kinase (AMPK) activator. Oncoimmunology 5, e1214787. https://doi.org/10.1080/2162402X.2016.1214787
  127. van Hooren, L., Georganaki, M., Huang, H., Mangsbo, S. M. and Dimberg, A. (2016) Sunitinib enhances the antitumor responses of agonistic CD40-antibody by reducing MDSCs and synergistically improving endothelial activation and T-cell recruitment. Oncotarget 7, 50277-50289. https://doi.org/10.18632/oncotarget.10364
  128. Veltman, J. D., Lambers, M. E. H., van Nimwegen, M., Hendriks, R. W., Hoogsteden, H. C., Aerts, J. G. J. V. and Hegmans, J. P. J. J. (2010) COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. BMC Cancer 10, 464. https://doi.org/10.1186/1471-2407-10-464
  129. Vonderheide, R. H. and Glennie, M. J. (2013) Agonistic CD40 antibodies and cancer therapy. Clin. Cancer Res. 19, 1035-1043. https://doi.org/10.1158/1078-0432.CCR-12-2064
  130. Wang, S. H., Lu, Q. Y., Guo, Y. H., Song, Y. Y., Liu, P. J. and Wang, Y. C. (2016) The blockage of Notch signalling promoted the generation of polymorphonuclear myeloid-derived suppressor cells with lower immunosuppression. Eur. J. Cancer 68, 90-105. https://doi.org/10.1016/j.ejca.2016.08.019
  131. Weed, D. T., Vella, J. L., Reis, I. M., De la Fuente, A. C., Gomez, C., Sargi, Z., Nazarian, R., Califano, J., Borrello, I. and Serafini, P. (2015) Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin. Cancer Res. 21, 39-48. https://doi.org/10.1158/1078-0432.CCR-14-1711
  132. Wei, C., Wang, Y. X., Ma, L., Wang, X., Chi, H., Zhang, S., Liu, T., Li, Z. Y., Xiang, D. M., Dong, Y. L., Wu, X. G., Shi, W. Y. and Gao, H. (2018) Rapamycin nano-micelle ophthalmic solution reduces corneal allograft rejection by potentiating myeloid-derived suppressor cells' function. Front. Immunol. 9, 2283. https://doi.org/10.3389/fimmu.2018.02283
  133. Winkler, D. G., Faia, K. L., DiNitto, J. P., Ali, J. A., White, K. F., Brophy, E. E., Pink, M. M., Proctor, J. L., Lussier, J., Martin, C. M., Hoyt, J. G., Tillotson, B., Murphy, E. L., Lim, A. R., Thomas, B. D., Macdougall, J. R., Ren, P., Liu, Y., Li, L. S., Jessen, K. A., Fritz, C. C., Dunbar, J. L., Porter, J. R., Rommel, C., Palombella, V. J., Changelian, P. S. and Kutok, J. L. (2013) PI3K-delta and PI3K-gamma inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem. Biol. 20, 1364-1374. https://doi.org/10.1016/j.chembiol.2013.09.017
  134. Xiao, L., Erb, U., Zhao, K., Hackert, T. and Zoller, M. (2017) Efficacy of vaccination with tumor-exosome loaded dendritic cells combined with cytotoxic drug treatment in pancreatic cancer. Oncoimmunology 6, e1319044. https://doi.org/10.1080/2162402X.2017.1319044
  135. Xu, Z., Ji, J. J., Xu, J. J., Li, D., Shi, G. P., Liu, F., Ding, L., Ren, J., Dou, H., Wang, T. T. and Hou, Y. Y. (2017) MiR-30a increases MDSC differentiation and immunosuppressive function by targeting SOCS3 in mice with B-cell lymphoma. FEBS J. 284, 2410-2424. https://doi.org/10.1111/febs.14133
  136. Yamaoka, T., Kusumoto, S., Ando, K., Ohba, M. and Ohmori, T. (2018) Receptor tyrosine kinase-targeted cancer therapy. Int. J. Mol. Sci. 19, 3491. https://doi.org/10.3390/ijms19113491
  137. Yan, D. H., Yang, Q., Shi, M. H., Zhong, L. M., Wu, C. Y., Meng, T., Yin, H. Y. and Zhou, J. (2013) Polyunsaturated fatty acids promote the expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 pathway. Eur. J. Immunol. 43, 2943-2955. https://doi.org/10.1002/eji.201343472
  138. Yoyen-Ermis, D., Ozturk-Atar, K., Kursunel, M. A., Aydin, C., Ozkazanc, D., Gurbuz, M. U., Uner, A., Tulu, M., Calis, S. and Esendagli, G. (2018) Tumor-induced myeloid cells are reduced by gemcitabineloaded PAMAM dendrimers decorated with anti-Flt1 antibody. Mol. Pharm. 15, 1526-1533. https://doi.org/10.1021/acs.molpharmaceut.7b01075
  139. Yu, H. and Jove, R. (2004) The STATs of cancer--new molecular targets come of age. Nat. Rev. Cancer 4, 97-105. https://doi.org/10.1038/nrc1275
  140. Yun, T. K. (2001) Brief introduction of Panax ginseng C.A. Meyer. J. Kor. Med. Sci. 16, S3. https://doi.org/10.3346/jkms.2001.16.S.S3
  141. Zhang, C., Wang, S., Li, J. W., Zhang, W. T., Zheng, L., Yang, C., Zhu, T. Y. and Rong, R. M. (2017) The mTOR signal regulates myeloidderived suppressor cells differentiation and immunosuppressive function in acute kidney injury. Cell Death Dis. 8, e2695. https://doi.org/10.1038/cddis.2017.86
  142. Zhang, M. M., Liu, Q. F., Mi, S. P., Liang, X., Zhang, Z. Q., Su, X. M., Liu, J. Y., Chen, Y. Y., Wang, M. M., Zhang, Y. A., Guo, F. H., Zhang, Z. J. and Yang, R. C. (2011) Both miR-17-5p and miR-20a alleviate suppressive potential of myeloid-derived suppressor cells by modulating STAT3 expression. J. Immunol. 186, 4716-4724. https://doi.org/10.4049/jimmunol.1002989
  143. Zhang, S., Wu, K., Liu, Y., Lin, Y., Zhang, X., Zhou, J., Zhang, H., Pan, T. and Fu, Y. (2016) Finasteride enhances the generation of human myeloid-derived suppressor cells by up-regulating the COX2/PGE2 pathway. PLoS ONE 11, e0156549. https://doi.org/10.1371/journal.pone.0156549
  144. Zhang, X. H., Fang, X. Y., Gao, Z. Z., Chen, W., Tao, F. F., Cai, P. F., Yuan, H. Q., Shu, Y. Q., Xu, Q., Sun, Y. and Gu, Y. H. (2014) Axitinib, a selective inhibitor of vascular endothelial growth factor receptor, exerts an anticancer effect in melanoma through promoting antitumor immunity. Anticancer Drugs 25, 204-211. https://doi.org/10.1097/CAD.0000000000000033
  145. Zhao, Y., Shao, Q., Zhu, H., Xu, H., Long, W., Yu, B., Zhou, L., Xu, H., Wu, Y. and Su, Z. (2018a) Resveratrol ameliorates Lewis lung carcinoma-bearing mice development, decreases granulocytic myeloid-derived suppressor cell accumulation and impairs its suppressive ability. Cancer Sci. 109, 2677-2686. https://doi.org/10.1111/cas.13720
  146. Zhao, Y., Shen, X. F., Cao, K., Ding, J., Kang, X., Guan, W. X., Ding, Y. T., Liu, B. R. and Du, J. F. (2018b) Dexamethasone-induced myeloid-derived suppressor cells prolong allo cardiac graft survival through iNOS-and glucocorticoid receptor-dependent mechanism. Front. Immunol. 9, 282. https://doi.org/10.3389/fimmu.2018.00282
  147. Zheng, Y. S., Xu, M., Li, X., Jia, J. P., Fan, K. X. and Lai, G. X. (2013) Cimetidine suppresses lung tumor growth in mice through proapoptosis of myeloid-derived suppressor cells. Mol. Immunol. 54, 74-83. https://doi.org/10.1016/j.molimm.2012.10.035
  148. Zilio, S., Vella, J. L., De la Fuente, A. C., Daftarian, P. M., Weed, D. T., Kaifer, A., Marigo, I., Leone, K., Bronte, V. and Serafini, P. (2017) 4PD functionalized dendrimers: a flexible tool for in vivo gene silencing of tumor-educated myeloid cells. J. Immunol. 198, 4166-4177. https://doi.org/10.4049/jimmunol.1600833
  149. Zoglmeier, C., Bauer, H., Noerenberg, D., Wedekind, G., Bittner, P., Sandholzer, N., Rapp, M., Anz, D., Endres, S. and Bourquin, C. (2011) CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin. Cancer Res. 17, 1765-1775. https://doi.org/10.1158/1078-0432.CCR-10-2672

Cited by

  1. A Novel Anti-PD-L1 Antibody Exhibits Antitumor Effects on Multiple Myeloma in Murine Models via Antibody-Dependent Cellular Cytotoxicity vol.29, pp.2, 2021, https://doi.org/10.4062/biomolther.2020.131