DOI QR코드

DOI QR Code

Recent Trends in Cyclic Peptides as Therapeutic Agents and Biochemical Tools

  • Received : 2019.05.17
  • Accepted : 2019.08.12
  • Published : 2019.12.30

Abstract

Notable progress has been made in the therapeutic and research applications of cyclic peptides since our previous review. New drugs based on cyclic peptides are entering the market, such as plecanatide, a cyclic peptide approved by the United States Food and Drug Administration in 2017 for the treatment of chronic idiopathic constipation. In this review, we discuss recent developments in stapled peptides, prepared with the use of chemical linkers, and bicyclic/tricyclic peptides with more than two rings. These have widespread applications for clinical and research purposes: imaging, diagnostics, improvement of oral absorption, enzyme inhibition, development of receptor agonist/antagonist, and the modulation of protein-protein interaction or protein-RNA interaction. Many cyclic peptides are expected to emerge as therapeutics and biochemical tools.

Keywords

References

  1. Baek, S., Kutchukian, P. S., Verdine, G. L., Huber, R., Holak, T. A., Lee, K. W. and Popowicz, G. M. (2012) Structure of the stapled p53 peptide bound to Mdm2. J. Am. Chem. Soc. 134, 103-106. https://doi.org/10.1021/ja2090367
  2. Beer, A. J., Haubner, R., Goebel, M., Luderschmidt, S., Spilker, M. E., Wester, H. J., Weber, W. A. and Schwaiger, M. (2005) Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J. Nucl. Med. 46, 1333-1341.
  3. Bertoldo, D., Khan, M. M., Dessen, P., Held, W., Huelsken, J. and Heinis, C. (2016) Phage selection of peptide macrocycles against beta-catenin to interfere with Wnt signaling. ChemMedChem 11, 834-839. https://doi.org/10.1002/cmdc.201500557
  4. Cai, M., Stankova, M., Muthu, D., Mayorov, A., Yang, Z., Trivedi, D., Cabello, C. and Hruby, V. J. (2013) An unusual conformation of gamma-melanocyte-stimulating hormone analogues leads to a selective human melanocortin 1 receptor antagonist for targeting melanoma cells. Biochemistry 52, 752-764. https://doi.org/10.1021/bi300723f
  5. Carelli, J. D., Sethofer, S. G., Smith, G. A., Miller, H. R., Simard, J. L., Merrick, W. C., Jain, R. K., Ross, N. T. and Taunton, J. (2015) Ternatin and improved synthetic variants kill cancer cells by targeting the elongation factor-1A ternary complex. eLife 4, e10222. https://doi.org/10.7554/eLife.10222
  6. Chang, Y. S., Graves, B., Guerlavais, V., Tovar, C., Packman, K., To, K. H., Olson, K. A., Kesavan, K., Gangurde, P., Mukherjee, A., Baker, T., Darlak, K., Elkin, C., Filipovic, Z., Qureshi, F. Z., Cai, H., Berry, P., Feyfant, E., Shi, X. E., Horstick, J., Annis, D. A., Manning, A. M., Fotouhi, N., Nash, H., Vassilev, L. T. and Sawyer, T. K. (2013) Stapled alpha-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl. Acad. Sci. U.S.A. 110, E3445-E3454. https://doi.org/10.1073/pnas.1303002110
  7. Colgrave, M. L., Korsinczky, M. J., Clark, R. J., Foley, F. and Craik, D. J. (2010) Sunflower trypsin inhibitor-1, proteolytic studies on a trypsin inhibitor peptide and its analogs. Biopolymers 94, 665-672. https://doi.org/10.1002/bip.21415
  8. Edman, P. (1959) Chemistry of amino acids and peptides. Annu. Rev. Biochem. 28, 69-96. https://doi.org/10.1146/annurev.bi.28.070159.000441
  9. El-Mowafi, S. A., Alumasa, J. N., Ades, S. E. and Keiler, K. C. (2014) Cell-based assay to identify inhibitors of the Hfq-sRNA regulatory pathway. Antimicrob. Agents Chemother. 58, 5500-5509. https://doi.org/10.1128/AAC.03311-14
  10. Fairlie, D. P. and Dantas de Araujo, A. (2016) Review stapling peptides using cysteine crosslinking. Biopolymers 106, 843-852. https://doi.org/10.1002/bip.22877
  11. Gehlsen, K. R., Argraves, W. S., Pierschbacher, M. D. and Ruoslahti, E. (1988) Inhibition of in vitro tumor cell invasion by Arg-Gly-Aspcontaining synthetic peptides. J. Cell Biol. 106, 925-930. https://doi.org/10.1083/jcb.106.3.925
  12. Heinis, C. (2011) Bicyclic peptide antagonists derived from genetically encoded combinatorial libraries. Chimia (Aarau) 65, 677-679. https://doi.org/10.2533/chimia.2011.677
  13. Horton, D. A., Bourne, G. T. and Smythe, M. L. (2002) Exploring privileged structures: the combinatorial synthesis of cyclic peptides. J. Comput. Aided Mol. Des. 16, 415-430. https://doi.org/10.1023/A:1020863921840
  14. Jagtap, P. K., Garg, D., Kapp, T. G., Will, C. L., Demmer, O., Luhrmann, R., Kessler, H. and Sattler, M. (2016) Rational design of cyclic peptide inhibitors of U2AF homology motif (UHM) domains to modulate pre-mRNA splicing. J. Med. Chem. 59, 10190-10197. https://doi.org/10.1021/acs.jmedchem.6b01118
  15. Joo, S. H. (2012) Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. (Seoul) 20, 19-26. https://doi.org/10.4062/biomolther.2012.20.1.019
  16. Koivunen, E., Arap, W., Valtanen, H., Rainisalo, A., Medina, O. P., Heikkila, P., Kantor, C., Gahmberg, C. G., Salo, T., Konttinen, Y. T., Sorsa, T., Ruoslahti, E. and Pasqualini, R. (1999) Tumor targeting with a selective gelatinase inhibitor. Nat. Biotechnol. 17, 768-774. https://doi.org/10.1038/11703
  17. Kwon, Y. and Kodadek, T. (2007) Quantitative comparison of the relative cell permeability of cyclic and linear peptides. Chem. Biol. 14, 671-677. https://doi.org/10.1016/j.chembiol.2007.05.006
  18. Lalonde, M. S., Lobritz, M. A., Ratcliff, A., Chamanian, M., Athanassiou, Z., Tyagi, M., Wong, J., Robinson, J. A., Karn, J., Varani, G. and Arts, E. J. (2011) Inhibition of both HIV-1 reverse transcription and gene expression by a cyclic peptide that binds the Tat-transactivating response element (TAR) RNA. PLoS Pathog. 7, e1002038. https://doi.org/10.1371/journal.ppat.1002038
  19. Lauber, T., Neudecker, P., Rosch, P. and Marx, U. C. (2003) Solution structure of human proguanylin: the role of a hormone prosequence. J. Biol. Chem. 278, 24118-24124. https://doi.org/10.1074/jbc.M300370200
  20. Lian, W., Jiang, B., Qian, Z. and Pei, D. (2014) Cell-permeable bicyclic peptide inhibitors against intracellular proteins. J. Am. Chem. Soc. 136, 9830-9833. https://doi.org/10.1021/ja503710n
  21. Lim, S. P., Wang, Q. Y., Noble, C. G., Chen, Y. L., Dong, H., Zou, B., Yokokawa, F., Nilar, S., Smith, P., Beer, D., Lescar, J. and Shi, P. Y. (2013) Ten years of dengue drug discovery: progress and prospects. Antiviral Res. 100, 500-519. https://doi.org/10.1016/j.antiviral.2013.09.013
  22. Lin, K. H., Ali, A., Rusere, L., Soumana, D. I., Kurt Yilmaz, N. and Schiffer, C. A. (2017) Dengue virus NS2B/NS3 protease inhibitors exploiting the prime side. J. Virol. 91, e00045-17.
  23. Liu, Q., Pan, D., Cheng, C., Zhang, A., Ma, C., Wang, L., Zhang, D., Liu, H., Jiang, H., Wang, T., Xu, Y., Yang, R., Chen, F., Yang, M. and Zuo, C. (2015) Targeting of MMP2 activity in malignant tumors with a 68Ga-labeled gelatinase inhibitor cyclic peptide. Nucl. Med. Biol. 42, 939-944. https://doi.org/10.1016/j.nucmedbio.2015.07.013
  24. Liu, S., Edwards, D. S., Ziegler, M. C., Harris, A. R., Hemingway, S. J. and Barrett, J. A. (2001) 99mTc-labeling of a hydrazinonicotinamide-conjugated vitronectin receptor antagonist useful for imaging tumors. Bioconjug. Chem. 12, 624-629. https://doi.org/10.1021/bc010012p
  25. Liu, T., Liu, Y., Kao, H. Y. and Pei, D. (2010) Membrane permeable cyclic peptidyl inhibitors against human Peptidylprolyl Isomerase Pin1. J. Med. Chem. 53, 2494-2501. https://doi.org/10.1021/jm901778v
  26. Male, A. L., Forafonov, F., Cuda, F., Zhang, G., Zheng, S., Oyston, P. C. F., Chen, P. R., Williamson, E. D. and Tavassoli, A. (2017) Targeting Bacillus anthracis toxicity with a genetically selected inhibitor of the PA/CMG2 protein-protein interaction. Sci. Rep. 7, 3104. https://doi.org/10.1038/s41598-017-03253-3
  27. Manna, A. K., Kumar, A., Ray, U., Das, S., Basu, G. and Roy, S. (2013) A cyclic peptide mimic of an RNA recognition motif of human La protein is a potent inhibitor of hepatitis C virus. Antiviral Res. 97, 223-226. https://doi.org/10.1016/j.antiviral.2012.12.026
  28. Melemenidis, S., Jefferson, A., Ruparelia, N., Akhtar, A. M., Xie, J., Allen, D., Hamilton, A., Larkin, J. R., Perez-Balderas, F., Smart, S. C., Muschel, R. J., Chen, X., Sibson, N. R. and Choudhury, R. P. (2015) Molecular magnetic resonance imaging of angiogenesis in vivo using polyvalent cyclic RGD-iron oxide microparticle conjugates. Theranostics 5, 515-529. https://doi.org/10.7150/thno.10319
  29. Millward, S. W., Fiacco, S., Austin, R. J. and Roberts, R. W. (2007) Design of cyclic peptides that bind protein surfaces with antibody-like affinity. ACS Chem. Biol. 2, 625-634. https://doi.org/10.1021/cb7001126
  30. Muppidi, A., Doi, K., Ramil, C. P., Wang, H. G. and Lin, Q. (2014) Synthesis of cell-permeable stapled BH3 peptide-based Mcl-1 inhibitors containing simple aryl and vinylaryl cross-linkers. Tetrahedron 70, 7740-7745. https://doi.org/10.1016/j.tet.2014.05.104
  31. Murugan, R. N., Park, J. E., Lim, D., Ahn, M., Cheong, C., Kwon, T., Nam, K. Y., Choi, S. H., Kim, B. Y., Yoon, D. Y., Yaffe, M. B., Yu, D. Y., Lee, K. S. and Bang, J. K. (2013) Development of cyclic peptomer inhibitors targeting the polo-box domain of polo-like kinase 1. Bioorg. Med. Chem. 21, 2623-2634. https://doi.org/10.1016/j.bmc.2013.02.020
  32. Naumann, T. A., Tavassoli, A. and Benkovic, S. J. (2008) Genetic selection of cyclic peptide Dam methyltransferase inhibitors. Chembiochem 9, 194-197. https://doi.org/10.1002/cbic.200700561
  33. Nielsen, D. S., Shepherd, N. E., Xu, W., Lucke, A. J., Stoermer, M. J. and Fairlie, D. P. (2017) Orally absorbed cyclic peptides. Chem. Rev. 117, 8094-8128. https://doi.org/10.1021/acs.chemrev.6b00838
  34. O’Neil, K. T., Hoess, R. H., Jackson, S. A., Ramachandran, N. S., Mousa, S. A. and DeGrado, W. F. (1992) Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library. Proteins 14, 509-515. https://doi.org/10.1002/prot.340140411
  35. Rezaeianpour, S., Bozorgi, A. H., Moghimi, A., Almasi, A., Balalaie, S., Ramezanpour, S., Nasoohi, S., Mazidi, S. M., Geramifar, P., Bitarafan-Rajabi, A. and Shahhosseini, S. (2017) Synthesis and biological evaluation of cyclic [99mTc]-HYNIC-CGPRPPC as a fibrin-binding peptide for molecular imaging of thrombosis and its comparison with [99mTc]-HYNIC-GPRPP. Mol. Imaging Biol. 19, 256-264. https://doi.org/10.1007/s11307-016-1004-3
  36. Ross, N. C., Reilley, K. J., Murray, T. F., Aldrich, J. V. and McLaughlin, J. P. (2012) Novel opioid cyclic tetrapeptides: trp isomers of CJ-15,208 exhibit distinct opioid receptor agonism and short-acting kappa opioid receptor antagonism. Br. J. Pharmacol. 165, 1097-1108. https://doi.org/10.1111/j.1476-5381.2011.01544.x
  37. Saito, T., Hirai, H., Kim, Y. J., Kojima, Y., Matsunaga, Y., Nishida, H., Sakakibara, T., Suga, O., Sujaku, T. and Kojima, N. (2002) CJ-15,208, a novel kappa opioid receptor antagonist from a fungus, Ctenomyces serratus ATCC15502. J. Antibiot. 55, 847-854. https://doi.org/10.7164/antibiotics.55.847
  38. Schlippe, Y. V., Hartman, M. C., Josephson, K. and Szostak, J. W. (2012) In vitro selection of highly modified cyclic peptides that act as tight binding inhibitors. J. Am. Chem. Soc. 134, 10469-10477. https://doi.org/10.1021/ja301017y
  39. Shan, L. (2004) Fluorescein-conjugated cyclic decapeptides, CGLIIQKNEC (CLT1) and CNAGESSKNC (CLT2). In Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD).
  40. Storgard, C. M., Stupack, D. G., Jonczyk, A., Goodman, S. L., Fox, R. I. and Cheresh, D. A. (1999) Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist. J. Clin. Invest. 103, 47-54. https://doi.org/10.1172/JCI3756
  41. Stupp, R., Hegi, M. E., Gorlia, T., Erridge, S. C., Perry, J., Hong, Y. K., Aldape, K. D., Lhermitte, B., Pietsch, T., Grujicic, D., Steinbach, J. P., Wick, W., Tarnawski, R., Nam, D. H., Hau, P., Weyerbrock, A., Taphoorn, M. J., Shen, C. C., Rao, N., Thurzo, L., Herrlinger, U., Gupta, T., Kortmann, R. D., Adamska, K., McBain, C., Brandes, A. A., Tonn, J. C., Schnell, O., Wiegel, T., Kim, C. Y., Nabors, L. B., Reardon, D. A., van den Bent, M. J., Hicking, C., Markivskyy, A., Picard, M. and Weller, M.; European Organisation for Research and Treatment of Cancer (EORTC); Canadian Brain Tumor Consortium; CENTRIC study team (2014) Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 15, 1100-1108. https://doi.org/10.1016/S1470-2045(14)70379-1
  42. Takagi, Y., Matsui, K., Nobori, H., Maeda, H., Sato, A., Kurosu, T., Orba, Y., Sawa, H., Hattori, K., Higashino, K., Numata, Y. and Yoshida, Y. (2017) Discovery of novel cyclic peptide inhibitors of dengue virus NS2B-NS3 protease with antiviral activity. Bioorg. Med. Chem. Lett. 27, 3586-3590. https://doi.org/10.1016/j.bmcl.2017.05.027
  43. Tambunan, U. S. and Alamudi, S. (2010) Designing cyclic peptide inhibitor of dengue virus NS3-NS2B protease by using molecular docking approach. Bioinformation 5, 250-254. https://doi.org/10.6026/97320630005250
  44. Trinh, T. B., Upadhyaya, P., Qian, Z. and Pei, D. (2016) Discovery of a direct ras inhibitor by screening a combinatorial library of cellpermeable bicyclic peptides. ACS Comb. Sci. 18, 75-85. https://doi.org/10.1021/acscombsci.5b00164
  45. Urech-Varenne, C., Radtke, F. and Heinis, C. (2015) Phage selection of bicyclic peptide ligands of the notch1 receptor. ChemMedChem 10, 1754-1761. https://doi.org/10.1002/cmdc.201500261
  46. Walensky, L. D., Kung, A. L., Escher, I., Malia, T. J., Barbuto, S., Wright, R. D., Wagner, G., Verdine, G. L. and Korsmeyer, S. J. (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466-1470. https://doi.org/10.1126/science.1099191
  47. Wang, W., Shao, R., Wu, Q., Ke, S., McMurray, J., Lang, F. F., Jr., Charnsangavej, C., Gelovani, J. G. and Li, C. (2009) Targeting gelatinases with a near-infrared fluorescent cyclic His-Try-Gly-Phe peptide. Mol. Imaging Biol. 11, 424-433. https://doi.org/10.1007/s11307-009-0219-y
  48. Wells, J. A. and McClendon, C. L. (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450, 1001-1009. https://doi.org/10.1038/nature06526
  49. Xu, S., Li, H., Shao, X., Fan, C., Ericksen, B., Liu, J., Chi, C. and Wang, C. (2012) Critical effect of peptide cyclization on the potency of peptide inhibitors against Dengue virus NS2B-NS3 protease. J. Med. Chem. 55, 6881-6887. https://doi.org/10.1021/jm300655h
  50. Yamaguchi, S., Ito, S., Kurogi-Hirayama, M. and Ohtsuki, S. (2017) Identification of cyclic peptides for facilitation of transcellular transport of phages across intestinal epithelium in vitro and in vivo. J. Control. Release 262, 232-238. https://doi.org/10.1016/j.jconrel.2017.07.037
  51. Yan, B., Qiu, F., Ren, L., Dai, H., Fang, W., Zhu, H. and Wang, F. (2015) 99mTc-3P-RGD2 molecular imaging targeting integrin alphavbeta3 in head and neck squamous cancer xenograft. J. Radioanal. Nucl. Chem. 304, 1171-1177. https://doi.org/10.1007/s10967-015-3928-5
  52. Zhang, Y., Degen, D., Ho, M. X., Sineva, E., Ebright, K. Y., Ebright, Y. W., Mekler, V., Vahedian-Movahed, H., Feng, Y., Yin, R., Tuske, S., Irschik, H., Jansen, R., Maffioli, S., Donadio, S., Arnold, E. and Ebright, R. H. (2014) GE23077 binds to the RNA polymerase ‘i’ and ‘i+1’ sites and prevents the binding of initiating nucleotides. eLife 3, e02450. https://doi.org/10.7554/eLife.02450

Cited by

  1. Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat? vol.15, 2020, https://doi.org/10.2147/ijn.s265876
  2. Bis-Lactam Peptide [ i , i +4]-Stapling with α-Methylated Thialysines vol.25, pp.19, 2020, https://doi.org/10.3390/molecules25194506
  3. Characterization and Validation of Arg286 Residue of IL-1RAcP as a Potential Drug Target for Osteoarthritis vol.8, 2020, https://doi.org/10.3389/fchem.2020.601477
  4. Fluorescent cyclic peptides for cell imaging vol.113, pp.1, 2020, https://doi.org/10.1002/pep2.24181
  5. Recent Advances in Small Peptides of Marine Origin in Cancer Therapy vol.19, pp.2, 2020, https://doi.org/10.3390/md19020115
  6. Macrocyclic Tetramers-Structural Investigation of Peptide-Peptoid Hybrids vol.26, pp.15, 2020, https://doi.org/10.3390/molecules26154548
  7. Argyrin F Treatment‐Induced Vulnerabilities Lead to a Novel Combination Therapy in Experimental Glioma vol.4, pp.9, 2020, https://doi.org/10.1002/adtp.202100078
  8. Biomedical Applications of a Novel Class of High-Affinity Peptides vol.54, pp.18, 2021, https://doi.org/10.1021/acs.accounts.1c00239
  9. Blockade of GRTH/DDX25 Phosphorylation by Cyclic Peptides Provides an Avenue for Developing a Nonhormonal Male Contraceptive vol.64, pp.19, 2020, https://doi.org/10.1021/acs.jmedchem.1c01201
  10. Cyclic peptides with a distinct arginine-fork motif recognize the HIV trans-activation response RNA in vitro and in cells vol.297, pp.6, 2021, https://doi.org/10.1016/j.jbc.2021.101390
  11. Assessment of the genotoxic potential of three novel composite nanomaterials using human lymphocytes and the fruit fly Drosophila melanogaster as model systems vol.9, 2022, https://doi.org/10.1016/j.ceja.2021.100230