References
- Baek, S., Kutchukian, P. S., Verdine, G. L., Huber, R., Holak, T. A., Lee, K. W. and Popowicz, G. M. (2012) Structure of the stapled p53 peptide bound to Mdm2. J. Am. Chem. Soc. 134, 103-106. https://doi.org/10.1021/ja2090367
- Beer, A. J., Haubner, R., Goebel, M., Luderschmidt, S., Spilker, M. E., Wester, H. J., Weber, W. A. and Schwaiger, M. (2005) Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J. Nucl. Med. 46, 1333-1341.
- Bertoldo, D., Khan, M. M., Dessen, P., Held, W., Huelsken, J. and Heinis, C. (2016) Phage selection of peptide macrocycles against beta-catenin to interfere with Wnt signaling. ChemMedChem 11, 834-839. https://doi.org/10.1002/cmdc.201500557
- Cai, M., Stankova, M., Muthu, D., Mayorov, A., Yang, Z., Trivedi, D., Cabello, C. and Hruby, V. J. (2013) An unusual conformation of gamma-melanocyte-stimulating hormone analogues leads to a selective human melanocortin 1 receptor antagonist for targeting melanoma cells. Biochemistry 52, 752-764. https://doi.org/10.1021/bi300723f
- Carelli, J. D., Sethofer, S. G., Smith, G. A., Miller, H. R., Simard, J. L., Merrick, W. C., Jain, R. K., Ross, N. T. and Taunton, J. (2015) Ternatin and improved synthetic variants kill cancer cells by targeting the elongation factor-1A ternary complex. eLife 4, e10222. https://doi.org/10.7554/eLife.10222
- Chang, Y. S., Graves, B., Guerlavais, V., Tovar, C., Packman, K., To, K. H., Olson, K. A., Kesavan, K., Gangurde, P., Mukherjee, A., Baker, T., Darlak, K., Elkin, C., Filipovic, Z., Qureshi, F. Z., Cai, H., Berry, P., Feyfant, E., Shi, X. E., Horstick, J., Annis, D. A., Manning, A. M., Fotouhi, N., Nash, H., Vassilev, L. T. and Sawyer, T. K. (2013) Stapled alpha-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl. Acad. Sci. U.S.A. 110, E3445-E3454. https://doi.org/10.1073/pnas.1303002110
- Colgrave, M. L., Korsinczky, M. J., Clark, R. J., Foley, F. and Craik, D. J. (2010) Sunflower trypsin inhibitor-1, proteolytic studies on a trypsin inhibitor peptide and its analogs. Biopolymers 94, 665-672. https://doi.org/10.1002/bip.21415
- Edman, P. (1959) Chemistry of amino acids and peptides. Annu. Rev. Biochem. 28, 69-96. https://doi.org/10.1146/annurev.bi.28.070159.000441
- El-Mowafi, S. A., Alumasa, J. N., Ades, S. E. and Keiler, K. C. (2014) Cell-based assay to identify inhibitors of the Hfq-sRNA regulatory pathway. Antimicrob. Agents Chemother. 58, 5500-5509. https://doi.org/10.1128/AAC.03311-14
- Fairlie, D. P. and Dantas de Araujo, A. (2016) Review stapling peptides using cysteine crosslinking. Biopolymers 106, 843-852. https://doi.org/10.1002/bip.22877
- Gehlsen, K. R., Argraves, W. S., Pierschbacher, M. D. and Ruoslahti, E. (1988) Inhibition of in vitro tumor cell invasion by Arg-Gly-Aspcontaining synthetic peptides. J. Cell Biol. 106, 925-930. https://doi.org/10.1083/jcb.106.3.925
- Heinis, C. (2011) Bicyclic peptide antagonists derived from genetically encoded combinatorial libraries. Chimia (Aarau) 65, 677-679. https://doi.org/10.2533/chimia.2011.677
- Horton, D. A., Bourne, G. T. and Smythe, M. L. (2002) Exploring privileged structures: the combinatorial synthesis of cyclic peptides. J. Comput. Aided Mol. Des. 16, 415-430. https://doi.org/10.1023/A:1020863921840
- Jagtap, P. K., Garg, D., Kapp, T. G., Will, C. L., Demmer, O., Luhrmann, R., Kessler, H. and Sattler, M. (2016) Rational design of cyclic peptide inhibitors of U2AF homology motif (UHM) domains to modulate pre-mRNA splicing. J. Med. Chem. 59, 10190-10197. https://doi.org/10.1021/acs.jmedchem.6b01118
- Joo, S. H. (2012) Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. (Seoul) 20, 19-26. https://doi.org/10.4062/biomolther.2012.20.1.019
- Koivunen, E., Arap, W., Valtanen, H., Rainisalo, A., Medina, O. P., Heikkila, P., Kantor, C., Gahmberg, C. G., Salo, T., Konttinen, Y. T., Sorsa, T., Ruoslahti, E. and Pasqualini, R. (1999) Tumor targeting with a selective gelatinase inhibitor. Nat. Biotechnol. 17, 768-774. https://doi.org/10.1038/11703
- Kwon, Y. and Kodadek, T. (2007) Quantitative comparison of the relative cell permeability of cyclic and linear peptides. Chem. Biol. 14, 671-677. https://doi.org/10.1016/j.chembiol.2007.05.006
- Lalonde, M. S., Lobritz, M. A., Ratcliff, A., Chamanian, M., Athanassiou, Z., Tyagi, M., Wong, J., Robinson, J. A., Karn, J., Varani, G. and Arts, E. J. (2011) Inhibition of both HIV-1 reverse transcription and gene expression by a cyclic peptide that binds the Tat-transactivating response element (TAR) RNA. PLoS Pathog. 7, e1002038. https://doi.org/10.1371/journal.ppat.1002038
- Lauber, T., Neudecker, P., Rosch, P. and Marx, U. C. (2003) Solution structure of human proguanylin: the role of a hormone prosequence. J. Biol. Chem. 278, 24118-24124. https://doi.org/10.1074/jbc.M300370200
- Lian, W., Jiang, B., Qian, Z. and Pei, D. (2014) Cell-permeable bicyclic peptide inhibitors against intracellular proteins. J. Am. Chem. Soc. 136, 9830-9833. https://doi.org/10.1021/ja503710n
- Lim, S. P., Wang, Q. Y., Noble, C. G., Chen, Y. L., Dong, H., Zou, B., Yokokawa, F., Nilar, S., Smith, P., Beer, D., Lescar, J. and Shi, P. Y. (2013) Ten years of dengue drug discovery: progress and prospects. Antiviral Res. 100, 500-519. https://doi.org/10.1016/j.antiviral.2013.09.013
- Lin, K. H., Ali, A., Rusere, L., Soumana, D. I., Kurt Yilmaz, N. and Schiffer, C. A. (2017) Dengue virus NS2B/NS3 protease inhibitors exploiting the prime side. J. Virol. 91, e00045-17.
- Liu, Q., Pan, D., Cheng, C., Zhang, A., Ma, C., Wang, L., Zhang, D., Liu, H., Jiang, H., Wang, T., Xu, Y., Yang, R., Chen, F., Yang, M. and Zuo, C. (2015) Targeting of MMP2 activity in malignant tumors with a 68Ga-labeled gelatinase inhibitor cyclic peptide. Nucl. Med. Biol. 42, 939-944. https://doi.org/10.1016/j.nucmedbio.2015.07.013
- Liu, S., Edwards, D. S., Ziegler, M. C., Harris, A. R., Hemingway, S. J. and Barrett, J. A. (2001) 99mTc-labeling of a hydrazinonicotinamide-conjugated vitronectin receptor antagonist useful for imaging tumors. Bioconjug. Chem. 12, 624-629. https://doi.org/10.1021/bc010012p
- Liu, T., Liu, Y., Kao, H. Y. and Pei, D. (2010) Membrane permeable cyclic peptidyl inhibitors against human Peptidylprolyl Isomerase Pin1. J. Med. Chem. 53, 2494-2501. https://doi.org/10.1021/jm901778v
- Male, A. L., Forafonov, F., Cuda, F., Zhang, G., Zheng, S., Oyston, P. C. F., Chen, P. R., Williamson, E. D. and Tavassoli, A. (2017) Targeting Bacillus anthracis toxicity with a genetically selected inhibitor of the PA/CMG2 protein-protein interaction. Sci. Rep. 7, 3104. https://doi.org/10.1038/s41598-017-03253-3
- Manna, A. K., Kumar, A., Ray, U., Das, S., Basu, G. and Roy, S. (2013) A cyclic peptide mimic of an RNA recognition motif of human La protein is a potent inhibitor of hepatitis C virus. Antiviral Res. 97, 223-226. https://doi.org/10.1016/j.antiviral.2012.12.026
- Melemenidis, S., Jefferson, A., Ruparelia, N., Akhtar, A. M., Xie, J., Allen, D., Hamilton, A., Larkin, J. R., Perez-Balderas, F., Smart, S. C., Muschel, R. J., Chen, X., Sibson, N. R. and Choudhury, R. P. (2015) Molecular magnetic resonance imaging of angiogenesis in vivo using polyvalent cyclic RGD-iron oxide microparticle conjugates. Theranostics 5, 515-529. https://doi.org/10.7150/thno.10319
- Millward, S. W., Fiacco, S., Austin, R. J. and Roberts, R. W. (2007) Design of cyclic peptides that bind protein surfaces with antibody-like affinity. ACS Chem. Biol. 2, 625-634. https://doi.org/10.1021/cb7001126
- Muppidi, A., Doi, K., Ramil, C. P., Wang, H. G. and Lin, Q. (2014) Synthesis of cell-permeable stapled BH3 peptide-based Mcl-1 inhibitors containing simple aryl and vinylaryl cross-linkers. Tetrahedron 70, 7740-7745. https://doi.org/10.1016/j.tet.2014.05.104
- Murugan, R. N., Park, J. E., Lim, D., Ahn, M., Cheong, C., Kwon, T., Nam, K. Y., Choi, S. H., Kim, B. Y., Yoon, D. Y., Yaffe, M. B., Yu, D. Y., Lee, K. S. and Bang, J. K. (2013) Development of cyclic peptomer inhibitors targeting the polo-box domain of polo-like kinase 1. Bioorg. Med. Chem. 21, 2623-2634. https://doi.org/10.1016/j.bmc.2013.02.020
- Naumann, T. A., Tavassoli, A. and Benkovic, S. J. (2008) Genetic selection of cyclic peptide Dam methyltransferase inhibitors. Chembiochem 9, 194-197. https://doi.org/10.1002/cbic.200700561
- Nielsen, D. S., Shepherd, N. E., Xu, W., Lucke, A. J., Stoermer, M. J. and Fairlie, D. P. (2017) Orally absorbed cyclic peptides. Chem. Rev. 117, 8094-8128. https://doi.org/10.1021/acs.chemrev.6b00838
- O’Neil, K. T., Hoess, R. H., Jackson, S. A., Ramachandran, N. S., Mousa, S. A. and DeGrado, W. F. (1992) Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library. Proteins 14, 509-515. https://doi.org/10.1002/prot.340140411
- Rezaeianpour, S., Bozorgi, A. H., Moghimi, A., Almasi, A., Balalaie, S., Ramezanpour, S., Nasoohi, S., Mazidi, S. M., Geramifar, P., Bitarafan-Rajabi, A. and Shahhosseini, S. (2017) Synthesis and biological evaluation of cyclic [99mTc]-HYNIC-CGPRPPC as a fibrin-binding peptide for molecular imaging of thrombosis and its comparison with [99mTc]-HYNIC-GPRPP. Mol. Imaging Biol. 19, 256-264. https://doi.org/10.1007/s11307-016-1004-3
- Ross, N. C., Reilley, K. J., Murray, T. F., Aldrich, J. V. and McLaughlin, J. P. (2012) Novel opioid cyclic tetrapeptides: trp isomers of CJ-15,208 exhibit distinct opioid receptor agonism and short-acting kappa opioid receptor antagonism. Br. J. Pharmacol. 165, 1097-1108. https://doi.org/10.1111/j.1476-5381.2011.01544.x
- Saito, T., Hirai, H., Kim, Y. J., Kojima, Y., Matsunaga, Y., Nishida, H., Sakakibara, T., Suga, O., Sujaku, T. and Kojima, N. (2002) CJ-15,208, a novel kappa opioid receptor antagonist from a fungus, Ctenomyces serratus ATCC15502. J. Antibiot. 55, 847-854. https://doi.org/10.7164/antibiotics.55.847
- Schlippe, Y. V., Hartman, M. C., Josephson, K. and Szostak, J. W. (2012) In vitro selection of highly modified cyclic peptides that act as tight binding inhibitors. J. Am. Chem. Soc. 134, 10469-10477. https://doi.org/10.1021/ja301017y
- Shan, L. (2004) Fluorescein-conjugated cyclic decapeptides, CGLIIQKNEC (CLT1) and CNAGESSKNC (CLT2). In Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD).
- Storgard, C. M., Stupack, D. G., Jonczyk, A., Goodman, S. L., Fox, R. I. and Cheresh, D. A. (1999) Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist. J. Clin. Invest. 103, 47-54. https://doi.org/10.1172/JCI3756
- Stupp, R., Hegi, M. E., Gorlia, T., Erridge, S. C., Perry, J., Hong, Y. K., Aldape, K. D., Lhermitte, B., Pietsch, T., Grujicic, D., Steinbach, J. P., Wick, W., Tarnawski, R., Nam, D. H., Hau, P., Weyerbrock, A., Taphoorn, M. J., Shen, C. C., Rao, N., Thurzo, L., Herrlinger, U., Gupta, T., Kortmann, R. D., Adamska, K., McBain, C., Brandes, A. A., Tonn, J. C., Schnell, O., Wiegel, T., Kim, C. Y., Nabors, L. B., Reardon, D. A., van den Bent, M. J., Hicking, C., Markivskyy, A., Picard, M. and Weller, M.; European Organisation for Research and Treatment of Cancer (EORTC); Canadian Brain Tumor Consortium; CENTRIC study team (2014) Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 15, 1100-1108. https://doi.org/10.1016/S1470-2045(14)70379-1
- Takagi, Y., Matsui, K., Nobori, H., Maeda, H., Sato, A., Kurosu, T., Orba, Y., Sawa, H., Hattori, K., Higashino, K., Numata, Y. and Yoshida, Y. (2017) Discovery of novel cyclic peptide inhibitors of dengue virus NS2B-NS3 protease with antiviral activity. Bioorg. Med. Chem. Lett. 27, 3586-3590. https://doi.org/10.1016/j.bmcl.2017.05.027
- Tambunan, U. S. and Alamudi, S. (2010) Designing cyclic peptide inhibitor of dengue virus NS3-NS2B protease by using molecular docking approach. Bioinformation 5, 250-254. https://doi.org/10.6026/97320630005250
- Trinh, T. B., Upadhyaya, P., Qian, Z. and Pei, D. (2016) Discovery of a direct ras inhibitor by screening a combinatorial library of cellpermeable bicyclic peptides. ACS Comb. Sci. 18, 75-85. https://doi.org/10.1021/acscombsci.5b00164
- Urech-Varenne, C., Radtke, F. and Heinis, C. (2015) Phage selection of bicyclic peptide ligands of the notch1 receptor. ChemMedChem 10, 1754-1761. https://doi.org/10.1002/cmdc.201500261
- Walensky, L. D., Kung, A. L., Escher, I., Malia, T. J., Barbuto, S., Wright, R. D., Wagner, G., Verdine, G. L. and Korsmeyer, S. J. (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466-1470. https://doi.org/10.1126/science.1099191
- Wang, W., Shao, R., Wu, Q., Ke, S., McMurray, J., Lang, F. F., Jr., Charnsangavej, C., Gelovani, J. G. and Li, C. (2009) Targeting gelatinases with a near-infrared fluorescent cyclic His-Try-Gly-Phe peptide. Mol. Imaging Biol. 11, 424-433. https://doi.org/10.1007/s11307-009-0219-y
- Wells, J. A. and McClendon, C. L. (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450, 1001-1009. https://doi.org/10.1038/nature06526
- Xu, S., Li, H., Shao, X., Fan, C., Ericksen, B., Liu, J., Chi, C. and Wang, C. (2012) Critical effect of peptide cyclization on the potency of peptide inhibitors against Dengue virus NS2B-NS3 protease. J. Med. Chem. 55, 6881-6887. https://doi.org/10.1021/jm300655h
- Yamaguchi, S., Ito, S., Kurogi-Hirayama, M. and Ohtsuki, S. (2017) Identification of cyclic peptides for facilitation of transcellular transport of phages across intestinal epithelium in vitro and in vivo. J. Control. Release 262, 232-238. https://doi.org/10.1016/j.jconrel.2017.07.037
- Yan, B., Qiu, F., Ren, L., Dai, H., Fang, W., Zhu, H. and Wang, F. (2015) 99mTc-3P-RGD2 molecular imaging targeting integrin alphavbeta3 in head and neck squamous cancer xenograft. J. Radioanal. Nucl. Chem. 304, 1171-1177. https://doi.org/10.1007/s10967-015-3928-5
- Zhang, Y., Degen, D., Ho, M. X., Sineva, E., Ebright, K. Y., Ebright, Y. W., Mekler, V., Vahedian-Movahed, H., Feng, Y., Yin, R., Tuske, S., Irschik, H., Jansen, R., Maffioli, S., Donadio, S., Arnold, E. and Ebright, R. H. (2014) GE23077 binds to the RNA polymerase ‘i’ and ‘i+1’ sites and prevents the binding of initiating nucleotides. eLife 3, e02450. https://doi.org/10.7554/eLife.02450
Cited by
- Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat? vol.15, 2020, https://doi.org/10.2147/ijn.s265876
- Bis-Lactam Peptide [ i , i +4]-Stapling with α-Methylated Thialysines vol.25, pp.19, 2020, https://doi.org/10.3390/molecules25194506
- Characterization and Validation of Arg286 Residue of IL-1RAcP as a Potential Drug Target for Osteoarthritis vol.8, 2020, https://doi.org/10.3389/fchem.2020.601477
- Fluorescent cyclic peptides for cell imaging vol.113, pp.1, 2020, https://doi.org/10.1002/pep2.24181
- Recent Advances in Small Peptides of Marine Origin in Cancer Therapy vol.19, pp.2, 2020, https://doi.org/10.3390/md19020115
- Macrocyclic Tetramers-Structural Investigation of Peptide-Peptoid Hybrids vol.26, pp.15, 2020, https://doi.org/10.3390/molecules26154548
- Argyrin F Treatment‐Induced Vulnerabilities Lead to a Novel Combination Therapy in Experimental Glioma vol.4, pp.9, 2020, https://doi.org/10.1002/adtp.202100078
- Biomedical Applications of a Novel Class of High-Affinity Peptides vol.54, pp.18, 2021, https://doi.org/10.1021/acs.accounts.1c00239
- Blockade of GRTH/DDX25 Phosphorylation by Cyclic Peptides Provides an Avenue for Developing a Nonhormonal Male Contraceptive vol.64, pp.19, 2020, https://doi.org/10.1021/acs.jmedchem.1c01201
- Cyclic peptides with a distinct arginine-fork motif recognize the HIV trans-activation response RNA in vitro and in cells vol.297, pp.6, 2021, https://doi.org/10.1016/j.jbc.2021.101390
- Assessment of the genotoxic potential of three novel composite nanomaterials using human lymphocytes and the fruit fly Drosophila melanogaster as model systems vol.9, 2022, https://doi.org/10.1016/j.ceja.2021.100230