DOI QR코드

DOI QR Code

Medical Implementation of Microarray Technology

마이크로어레이 분석기법의 임상적용에 관한 연구

  • Kang, Ji Un (Department of Biomedical Laboratory Science, Korea Nazarene University)
  • 강지언 (나사렛대학교 임상병리학과)
  • Received : 2020.10.27
  • Accepted : 2020.11.09
  • Published : 2020.12.31

Abstract

Microarray technology represents a critical new advance in molecular cytogenetics. The development of this approach has provided fundamental insights into the molecular pathogenesis in clinical cytogenetics and has provided a clue to many unidentified or unexplained diseases. The approach allows a comprehensive investigation of thousands and millions of genomic loci simultaneously and enables the efficient detection of copy number alterations. The application of this technology has shown tremendous fluidity and complexity of the human genome, and has provided accurate diagnosis and appropriate clinical management in a timely and efficient manner for identifying genomic alterations. The clinical impact of the genomic alterations identified by microarrays is evolving into a diagnostic tool to identify high-risk patients better and predict patient outcomes from their genomic profiles. The transformation of conventional cytogenetics into an automated discipline will improve diagnostic yield significantly, leading to accurate diagnosis and genetic counseling. This article reviews cytogenetic technologies used to identify human chromosome alterations and highlights the potential utility of present and future genome microarray technology in the diagnosis.

마이크로어레이 진단 기법의 발달은 세포유전학적 관점에서, 다양한 종류의 유전학적 질병과 관련하여 새로운 정보를 제공하고, 질병에 대한 기본적인 통찰력을 제공하는데 매우 중요한 역할을 제공하고 있다. 그동안 많은 연구들에서, 마이크로어레이 기술을 활용한 인간 게놈의 유동성과 다양성을 입증해 주었으며, 게놈의 취약성을 식별하기 위한 보다 정확한 진단기법과 적절한 임상 관리 방법을 효율적으로 제공해 왔다. 앞으로 다양한 유전과 관련된 질병에 기존 세포유전학적 방법을 자동화된 마이크로어레이 방법으로 전환한다면, 보다 효율적인 방법으로 질병을 진단하고, 정확성을 향상시키며, 유전자 배열의 암호화 및 복잡한 특성을 밝히는데 매우 중요한 역할을 할 것으로 생각된다. 또한 이 분석 기법을 활용하여 게놈과 인간의 건강, 질병과의 관계를 분석하여 다양한 정보를 미리 제공하여 질병을 예방하고, 질병의 진단 및 치료에도 도움이 될 수 있는 새로운 혁명을 일으킬 수 있을 것으로 기대된다.

Keywords

References

  1. Arenillas L, Mallo M, Ramos F, Guinta K, Barragan E, Lumbreras E, et al. Single nucleotide polymorphism array karyotyping: a diagnostic and prognostic tool in myelodysplastic syndromes with unsuccessful conventional cytogenetic testing. Genes Chromosomes Cancer. 2013;52:1167-1177. https://doi.org/10.1002/gcc.22112
  2. Speicher MR, Carter NP. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet. 2005;6:782-792. https://doi.org/10.1038/nrg1692
  3. Darilek S, Ward P, Pursley A, Plunkett K, Furman P, Magoulas P, et al. Pre and postnatal genetic testing by array-comparative genomic hybridization: genetic counseling perspectives. Genet Med. 2008;10:13-18. https://doi.org/10.1097/GIM.0b013e31815f1ddb
  4. Li MM, Andersson HC. Clinical application of microarray-based molecular cytogenetics: an emerging new era of genomic medicine. J Pediatr. 2009;155:311-317. https://doi.org/10.1016/j.jpeds.2009.04.001
  5. Kang JU, Koo SH. Evolving applications of microarray technology in postnatal diagnosis (review). Int J Mol Med. 2012:30:223-228. https://doi.org/10.3892/ijmm.2012.988
  6. Savl H, Uzulmez N, Ilkay Z, Yavuz D, Sunnetci D, Hachanifioglu A, et al. High throughput FISH analysis: a new, sensitive option for evaluation of hematological malignancies. Turk J Haematol. 2013;30:122-128. https://doi.org/10.4274/Tjh.2012.0033
  7. Kang JU. Overview of cytogenetic technologies. Korean J Clin Lab Sci. 2018;50:375-381. https://doi.org/10.15324/kjcls.2018.50.4.375
  8. Varella-Garcia M. Molecular cytogenetics in solid tumors: laboratorial tool for diagnosis, prognosis, and therapy. Oncologist. 2003;8:45-58. https://doi.org/10.1634/theoncologist.8-1-45
  9. Kang JU, Koo SH. Clinical implementation of chromosomal microarray technology in prenatal diagnosis. Mol Med Rep. 2012:6:1219-1222. https://doi.org/10.3892/mmr.2012.1116
  10. Dave BJ, Sanger WG. Role of cytogenetics and molecular cytogenetics in the diagnosis of genetic imbalances. Semin Pediatr Neurol. 2007;14:2-6. https://doi.org/10.1016/j.spen.2006.11.003
  11. Li M, Pinkel D. Clinical cytogenetics and molecular cytogenetics. J Zhejiang Univ Sci B. 2006;7:162-163. https://doi.org/10.1631/jzus.2006.B0162
  12. Shaffer LG, Bejjani BA. Medical applications of array CGH and the transformation of clinical cytogenetics. Cytogenet Genome Res. 2006;115:303-309. https://doi.org/10.1159/000095928
  13. Raynaud CM, Sabatier L, Philipot O, Olaussen KA, Soria JC. Raynaud CM, et al. Telomere length, telomeric proteins and genomic instability during the multistep carcinogenic process. Crit Rev Oncol Hematol. 2008;66:99-117. https://doi.org/10.1016/j.critrevonc.2007.11.006
  14. Oostlander AE, Meijer GA, Ylstra B. Microarray-based comparative genomic hybridization and its applications in human genetics. Clin Genet. 2004;66:488-495. https://doi.org/10.1111/j.1399-0004.2004.00322.x
  15. Bejjani BA, Theisen AP, Ballif BC, Shaffer LG. Array-based comparative genomic hybridization in clinical diagnosis. Expert Rev Mol Diagn. 2005;5:421-429. https://doi.org/10.1586/14737159.5.3.421
  16. Bejjani BA, Shaffer LG. Clinical utility of contemporary molecular cytogenetics. Annu Rev Genomics Hum Genet. 2008;9:71-86. https://doi.org/10.1146/annurev.genom.9.081307.164207
  17. Morrow EM. Genomic copy number variation in disorders of cognitive development. J Am Acad Child Adolesc Psychiatry. 2010;49:1091-1104. https://doi.org/10.1016/j.jaac.2010. 08.009
  18. Marshall CR, Scherer SW. Detection and characterization of copy number variation in autism spectrum disorder. Methods Mol Biol. 2012;838:115-135. https://doi.org/10.1007/978-1-61779-507-7_5
  19. Koolen DA, Pfundt R, de Leeuw N, Hehir-Kwa JY, Nillesen WM, Neefs I, et al. Genomic microarrays in mental retardation: a practical workflow for diagnostic applications. Hum Mutat. 2009;30:283-292. https://doi.org/10.1002/humu.20883
  20. Vasudevan P, Suri M. A clinical approach to developmental delay and intellectual disability. Clin Med (Lond). 2017;17:558-561. https://doi.org/10.7861/clinmedicine.17-6-558
  21. Shevell M, Ashwal S, Donley D, Flint J, Gingold M, Hirtz D, et al. Practice parameter: evaluation of the child with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2003;60:367-380. https://doi.org/10.1212/01.wnl.0000031431.81555.16
  22. Ravnan JB, Tepperberg JH, Papenhausen P, Lamb AN, Hedrick J, Eash D, et al. Subtelomere FISH analysis of 11 688 cases: an evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. J Med Genet. 2006;43:478-489. https://doi.org/10.1136/jmg.2005.036350
  23. Lu XY, Phung MT, Shaw CA, Pham K, Neil SE, Patel A, et al. Genomic imbalances in neonates with birth defects: high detection rates by using chromosomal microarray analysis. Pediatrics. 2008;122:1310-1308. https://doi.org/10.1542/peds.2008-0297
  24. J Dave, WG Sanger. Role of cytogenetics and molecular cytogenetics in the diagnosis of genetic imbalances. Semin Pediatr Neurol. 2007;14:2-6. https://doi.org/10.1016/j.spen.2006.11.003
  25. Lichtenbelt KD, Knoers NV, Schuring-Blom GH. From karyotyping to array-CGH in prenatal diagnosis. Cytogenet Genome Res. 2011;135:241-250. https://doi.org/10.1159/000334065
  26. Moeschler JB, Shevell M; Committee on Genetics. Comprehensive evaluation of the child with intellectual disability or global developmental delays. Pediatrics. 2014;134:e903-918. https://doi.org/10.1542/peds.2014-1839
  27. Fan YS, Jayakar P, Zhu H, Barbouth D, Sacharow S, Morales A, et al. Detection of pathogenic gene copy number variations in patients with mental retardation by genomewide oligonucleotide array comparative genomic hybridization. Hum Mutat. 2007; 28:1124-1132. https://doi.org/10.1002/humu.20581
  28. Jaillard S, Drunat S, Bendavid C, Aboura A, Etcheverry A, Journel H, et al. Identification of gene copy number variations in patients with mental retardation using array-CGH: novel syndromes in a large French series. Eur J Med Genet. 2010;53:66-75. https://doi.org/10.1016/j.ejmg.2009.10.002
  29. Edelmann L, Hirschhorn K. Clinical utility of array CGH for the detection of chromosomal imbalances associated with mental retardation and multiple congenital anomalies. Ann N Y Acad Sci. 2009;1151:157-166. https://doi.org/10.1111/j.1749-6632.2008.03610.x
  30. Gonzalez G, Raggio V, Boidi M, Tapie A, Roche L. Advances in the identification of the aetiology of mental retardation. Rev Neurol. 2013;57:S75-83. https://doi.org/10.33588/rn.57S01.2013242
  31. Batzir NA, Shohat M, Maya I. Chromosomal microarray analysis (CMA) a clinical diagnostic tool in the prenatal and postnatal settings. Pediatr Endocrinol Rev. 2015;13:448-454.
  32. Lu X, Shaw CA, Patel A, Li J, Cooper ML, Wells WR, et al. Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases. PLoS One. 2007;28;2:e327. https://doi.org/10.1371/journal.pone.0000327
  33. Peters GB, Pertile MD. Chromosome microarrays in diagnostic testing: interpreting the genomic data. Methods Mol Biol. 2014;1168:117-155. https://doi.org/10.1007/978-1-4939-0847-9_8
  34. Bui TH, Vetro A, Zuffardi O, Shaffer LG. Current controversies in prenatal diagnosis 3: is conventional chromosome analysis necessary in the post-array CGH era? Prenat Diagn. 2011;31:235-243. https://doi.org/10.1002/pd.2722
  35. de Vries BB, Pfundt R, Leisink M, Koolen DA, Vissers LE, Janssen IM, et al. Diagnostic genome profiling in mental retardation. Am J Hum Genet. 2005;77:606-616. https://doi.org/10.1086/491719
  36. Society for Maternal-Fetal Medicine (SMFM), Dugoff. Electronic address: pubs@smfm.org, Dugoff L, Norton ME, Kuller JA. The use of chromosomal microarray for prenatal diagnosis. Am J Obstet Gynecol. 2016;215:B2-9. https://doi.org/10.1016/j.ajog.2016.07.016
  37. Wang Y, Cao L, Liang D, Meng L, Wu Y, Qiao F, et al. Prenatal chromosomal microarray analysis in fetuses with congenital heart disease: a prospective cohort study. Am J Obstet Gynecol. 2018;218:244.e1-244.e17. https://doi.org/10.1016/j.ajog.2017.10.225
  38. Evangelidou P, Sismani C, Ioannides M, Christodoulou C, Koumbaris G, Kallikas I, et al. Clinical application of whole-genome array CGH during prenatal diagnosis: Study of 25 selected pregnancies with abnormal ultrasound findings or apparently balanced structural aberrations. Mol Cytogenet. 2010;26;3:24. https://doi.org/10.1186/1755-8166-3-24
  39. Liu J, Bernier F, Lauzon J, Lowry RB, Chernos J. Liu J, et al. Application of microarray-based comparative genomic hybridization in prenatal and postnatal settings: three case reports. Genet Res Int. 2011;2011:976398. https://doi.org/10.4061/2011/976398
  40. Best S, Wou K, Vora N, Van der Veyver IB, Wapner R, Chitty LS. Promises, pitfalls and practicalities of prenatal whole exome sequencing. Prenat Diagn. 2018;38:10-19. https://doi.org/10.1002/pd.5102