DOI QR코드

DOI QR Code

Flexible biosensors based on field-effect transistors and multi-electrode arrays: a review

  • Kim, Ju-Hwan (School of Electrical and Computer Engineering, University of Seoul) ;
  • Park, Je-Won (School of Electrical and Computer Engineering, University of Seoul) ;
  • Han, Dong-Jun (School of Electrical and Computer Engineering, University of Seoul) ;
  • Park, Dong-Wook (School of Electrical and Computer Engineering, University of Seoul)
  • Received : 2020.11.29
  • Accepted : 2020.11.30
  • Published : 2020.12.30

Abstract

As biosensors are widely used in the medical field, flexible devices compatible with live animals have aroused great interest. Especially, significant research has been carried out to develop implantable or skin-attachable devices for real-time bio-signal sensing. From the device point of view, various biosensor types such as field-effect transistors (FETs) and multi-electrode arrays (MEAs) have been reported as diverse sensing strategies. In particular, the flexible FETs and MEAs allow semiconductor engineering to expand its application, which had been impossible with stiff devices and materials. This review summarizes the state-of-the-art research on flexible FET and MEA biosensors focusing on their materials, structures, sensing targets, and methods.

Keywords

References

  1. T. Matsuo and M. Esashi. (1981), Methods of ISFET fabrication. Sensors and Actuators. 1, pp. 77-96. Available: 10.1016/0250-6874(81)80006-6
  2. W.-S. Kao, Y.-W. Hung and C.-H. Lin. (2020, Aug). SolidState Sensor Chip Produced with Single Laser Engraving for Urine Acidity and Total Dissolved Ion Detections. ECS Journal of Solid State Science and Technology. 9(11), Available: 10.1149/2162-8777/abac92
  3. T. Wadhera, D. Kakkar, G. Wadhwa and B. Raj. (2019, Oct). Recent advances and progress in development of the field effect transistor biosensor: A review. Journal of Electronic Materials. 48(12), pp. 7635-7646. Available: 10.1007/s11664-019-07705-6
  4. P. Mehrotra. (2016, Jan). Biosensors and their applications-a review. J Oral Biol Craniofac Res 6(2), pp. 153-159 Available: 10.1016/j.jobcr.2015.12.002
  5. J. T. Smith, S. S. Shah, M. Goryll, J. R. Stowell and D. R. Allee. (2013, Dec). Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO sensing layer. IEEE Sensors Journal. 14(4), pp. 937-938. Available: 10.1109/JSEN.2013.2295057
  6. D. Lee and T. Cui. (2010, June). Low-cost, transparent, and flexible single-walled carbon nanotube nanocomposite based ion-sensitive field-effect transistors for pH/glucose sensing. Biosensors and Bioelectronics. 25(10), pp. 2259-2264. Available: 10.1016/j.bios.2010.03.003
  7. I.-K. Lee, K. H. Lee, S. Lee and W.-J. Cho. (2014, Dec). Microwave annealing effect for highly reliable biosensor: dual-gate ion-sensitive field-effect transistor using amorphous InGaZnO thin-film transistor. ACS applied materials & interfaces. 6(24), pp. 22680-22686. Available: 10.1021/am506805a
  8. S. Veeralingam and S. Badhulika. (2020, Oct). Surface functionalized β-Bi2O3 nanofibers based flexible, fieldeffect transistor-biosensor (BioFET) for rapid, label-free detection of serotonin in biological fluids. Sensors and Actuators B: Chemical. 321, Available: 10.1016/j.snb.2020.128540
  9. H. Li, Y. Zhu, M. S. Islam, M. A. Rahman, K. B. Walsh and G. Koley. (2017,Dec). Graphene field effect transistors for highly sensitive and selective detection of K+ ions. Sensors and Actuators B: Chemical. 253, pp. 759-765. Available: doi.org/10.1016/j.snb.2017.06.129
  10. S. Shah, J. Smith, J. Stowell and J. B. Christen. (2015,Dec). Biosensing platform on a flexible substrate. Sensors and Actuators B: Chemical. 210, pp. 197-203. Available: 10.1016/j.snb.2014.12.075
  11. M. Medina-Sanchez, C. Martinez-Domingo, E. Ramon and A. Merkoci. (2014,July). An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing. Advanced Functional Materials. 24(40), pp. 6291-6302. Available: 10.1002/adfm.201401180
  12. Q. Liu, Y. Liu, F. Wu, X. Cao, Z. Li, M. Alharbi, A. N. Abbas, M. R. Amer and C. Zhou. (2018,Jan). Highly sensitive and wearable In2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids. ACS nano. 12(2), pp. 1170-1178. Available: 10.1021/acsnano.7b06823
  13. M. Kaisti. (2017,Dec). Detection principles of biological and chemical FET sensors. Biosensors and Bioelectronics. 98, pp. 437-448. Available: 10.1016/j.bios.2017.07.010
  14. S. Nakata, T. Arie, S. Akita and K. Takei. (2017,Mar). Wearable, flexible, and multifunctional healthcare device with an ISFET chemical sensor for simultaneous sweat pH and skin temperature monitoring. ACS sensors. 2(3), pp. 443-448. Available: 10.1021/acssensors.7b00047
  15. H.-J. Jang and W.-J. Cho. (2014,June). Performance enhancement of capacitive-coupling dual-gate ion-sensitive field-effect transistor in ultra-thin-body. Scientific reports. 4(pp. 5284. Available: 10.1038/srep05284
  16. M. Y. Mulla, E. Tuccori, M. Magliulo, G. Lattanzi, G. Palazzo, K. Persaud and L. Torsi. (2015,Jan). Capacitancemodulated transistor detects odorant binding protein chiral interactions. Nature communications. 6(1), pp. 1-9. Available: 10.1038/ncomms7010
  17. D. Khodagholy, T. Doublet, P. Quilichini, M. Gurfinkel, P. Leleux, A. Ghestem, E. Ismailova, T. Herve, S. Sanaur and C. Bernard. (2013,Mar). In vivo recordings of brain activity using organic transistors. Nature communications. 4(1), pp. 1-7. Available: 10.1038/ncomms2573
  18. N. Liu, L. Q. Zhu, P. Feng, C. J. Wan, Y. H. Liu, Y. Shi and Q. Wan. (2015,Dec). Flexible sensory platform based on oxide-based neuromorphic transistors. Scientific reports. 5, 18082. Available: 10.1038/srep18082
  19. R. D. Munje, S. Muthukumar, A. P. Selvam and S. Prasad. (2015,Sep). Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics. Scientific reports. 5, 14586. Available: doi.org/10.1038/srep14586
  20. L. Xiang, Z. Wang, Z. Liu, S. E. Weigum, Q. Yu and M. Y. Chen. (2016,Dec). Inkjet-printed flexible biosensor based on graphene field effect transistor. IEEE Sensors Journal. 16(23), pp. 8359-8364. Available: 10.1109/JSEN.2016.2608719.
  21. O. S. Kwon, S. J. Park, J.-Y. Hong, A.-R. Han, J. S. Lee, J. S. Lee, J. H. Oh and J. Jang. (2012,Jan). Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. Acs Nano. 6(2), pp. 1486-1493. Available: 10.1021/nn204395n
  22. Q. Z. Liu, Y. H. Liu, F. Q. Wu, X. Cao, Z. Li, M. Alharbi, A. N. Abbas, M. R. Amer and C. W. Zhou. (2018, Feb). Highly Sensitive and Wearable In2O3 Nanoribbon Transistor Biosensors with Integrated On-Chip Gate for Glucose Monitoring in Body Fluids. Acs Nano. 12(2), pp. 1170-1178. Available: 10.1021/acsnano.7b06823
  23. V. D. Bhatt, S. Joshi, M. Becherer and P. Lugli. (2017, May). Flexible, Low-Cost Sensor Based on Electrolyte Gated Carbon Nanotube Field Effect Transistor for OrganoPhosphate Detection. Sensors. 17(5), Available: ARTN 1147. 10.3390/s17051147
  24. T. Sekitani, T. Yokota, K. Kuribara, M. Kaltenbrunner, T. Fukushima, Y. Inoue, M. Sekino, T. Isoyama, Y. Abe, H. Onodera and T. Someya. (2016, Apr). Ultraflexible organic amplifier with biocompatible gel electrodes. Nature Communications. 7, Available: ARTN 11425. 10.1038/ncomms11425
  25. J. Viventi, D. H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y. S. Kim, A. E. Avrin, V. R. Tiruvadi, S. W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. L. Xiao, Y. G. Huang, D. Contreras, J. A. Rogers and B. Litt. (2011, Dec). Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature Neuroscience. 14(12), pp. 1599-1605. Available: 10.1038/nn.2973
  26. C. F. Lourenco, A. Ledo, J. Laranjinha, G. A. Gerhardt and R. M. Barbosa. (2016, Dec). Microelectrode array biosensor for high-resolution measurements of extracellular glucose in the brain. Sensors and Actuators B-Chemical. 237, pp. 298-307. Available: 10.1016/j.snb.2016.06.083
  27. M. David-Pur, L. Bareket-Keren, G. Beit-Yaakov, D. RazPrag and Y. Hanein. (2014, Feb). All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation. Biomedical Microdevices. 16(1), pp. 43-53. Available: 10.1007/s10544-013-9804-6
  28. D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Q. Ma and J. C. Williams. (2014, Oct). Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nature Communications. 5, Available: ARTN 5258. 10.1038/ncomms6258
  29. D. C. Rodger, A. J. Fong, L. Wen, H. Ameri, A. K. Ahuja, C. Gutierrez, I. Lavrov, Z. Hui, P. R. Menon, E. Meng, J. W. Burdick, R. R. Roy, V. R. Edgerton, J. D. Weiland, M. S. Humayun and Y. C. Tai. (2008, Jun). Flexible parylenebased multielectrode array technology for high-density neural stimulation and recording. Sensors and Actuators BChemical. 132(2), pp. 449-460. Available: 10.1016/j.snb.2007.10.069
  30. K. W. Meacham, R. J. Giuly, L. Guo, S. Hochman and S. P. DeWeerth. (2008, Apr). A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord. Biomedical Microdevices. 10(2), pp. 259-269. Available: 10.1007/s10544-007-9132-9
  31. B. J. Choi, J. H. Kim, W. J. Yang, D. J. Han, J. Park and D. W. Park. (2020, Oct). Parylene-Based Flexible Microelectrode Arrays for the Electrical Recording of Muscles and the Effect of Electrode Size. Applied SciencesBasel. 10(20), Available: ARTN 7364. 10.3390/app10207364
  32. B. G. Lapatki, J. P. van Dijk, I. E. Jonas, M. J. Zwarts and D. F. Stegeman. (2004, Jan). A thin, flexible multielectrode grid for high-density surface EMG. Journal of Applied Physiology. 96(1), pp. 327-336. Available: 10.1152/japplphysiol.00521.2003
  33. T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. H. Li, J. Z. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. F. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. G. Huang, F. G. Omenetto, J. A. Rogers and M. R. Bruchas. (2013, Apr). Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics. Science. 340(6129), pp. 211-216. Available: 10.1126/science.1232437
  34. K. J. Xie, S. M. Zhang, S. R. Dong, S. J. Li, C. N. Yu, K. D. Xu, W. K. Chen, W. Guo, J. K. Luo and Z. H. Wu. (2017, Aug). Portable wireless electrocorticography system with a flexible microelectrodes array for epilepsy treatment. Scientific Reports. 7, Available: ARTN 7808. 10.1038/s41598-017-07823-3
  35. M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne and D. Ricci. (2017, Jan). Highly Stable Glassy Carbon Interfaces for Long-Term Neural Stimulation and Low-Noise Recording of Brain Activity. Scientific Reports. 7, Available: ARTN 40332. 10.1038/srep40332
  36. D. W. Park, J. P. Ness, S. K. Brodnick, C. Esquibel, J. Novello, F. Atry, D. H. Baek, H. Kim, J. Bong, K. I. Swanson, A. J. Suminski, K. J. Otto, R. Pashaie, J. C. Williams and Z. Q. Ma. (2018, Jan). Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice. Acs Nano. 12(1), pp. 148-157. Available: 10.1021/acsnano.7b04321
  37. C. B. Liu, Y. Zhao, X. Cai, Y. Xie, T. Y. Wang, D. L. Cheng, L. Z. Li, R. F. Li, Y. P. Deng, H. Ding, G. Q. Lv, G. L. Zhao, L. Liu, G. S. Zou, M. X. Feng, Q. A. Sun, L. Yin and X. Sheng. (2020, Aug). A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. Microsystems & Nanoengineering. 6(1), Available: ARTN 64. 10.1038/s41378-020-0176-9
  38. L. Etemadi, M. Mohammed, P. T. Thorbergsson, J. Ekstrand, A. Friberg, M. Granmo, L. M. E. Pettersson and J. Schouenborg. (2016, May). Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers. Plos One. 11(5), Available: ARTN e0155109. 10.1371/journal.pone.0155109
  39. Y. C. Zhang, N. Zheng, Y. Cao, F. L. Wang, P. Wang, Y. J. Ma, B. W. Lu, G. H. Hou, Z. Z. Fang, Z. W. Liang, M. K. Yue, Y. Li, Y. Chen, J. Fu, J. Wu, T. Xie and X. Feng. (2019, Apr). Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Science Advances. 5(4), Available: ARTN eaaw1066. 10.1126/sciadv.aaw1066
  40. K. I. Song, S. E. Park, S. Lee, H. Kim, S. H. Lee and I. Youn. (2018, Oct). Compact Optical Nerve Cuff Electrode for Simultaneous Neural Activity Monitoring and Optogenetic Stimulation of Peripheral Nerves. Scientific Reports. 8, Available: ARTN 15630. 10.1038/s41598-018-33695-2
  41. C. L. Kolarcik, S. D. Luebben, S. A. Sapp, J. Hanner, N. Snyder, T. D. Y. Kozai, E. Chang, J. A. Nabity, S. T. Nabity, C. F. Lagenaur and X. T. Cui. (2015, Elastomeric and soft conducting microwires for implantable neural interfaces. Soft Matter. 11(24), pp. 4847-4861. Available: 10.1039/c5sm00174a
  42. F. Ejserholm, A. Vastesson, T. Haraldsson, W. van der Wijngaart, J. Schouenborg, L. Wallman and M. Bengtsson. (2013, A polymer neural probe with tunable flexibility. 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER). Available: 10.1109/NER.2013.6696028.
  43. H. Shin, Y. Son, U. Chae, J. Kim, N. Choi, H. J. Lee, J. Woo, Y. Cho, S. H. Yang, C. J. Lee and I. J. Cho. (2019, Aug). Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo. Nature Communications. 10(pp. Available: ARTN 3777 10.1038/s41467-019-11628-5
  44. J. T. W. Kuo, B. J. Kim, S. A. Hara, C. D. Lee, C. A. Gutierrez, T. Q. Hoang and E. Meng. (2013,Nov). Novel flexible Parylene neural probe with 3D sheath structure for enhancing tissue integration. Lab on a Chip. 13(4), pp. 554-561. Available: 10.1039/c2lc40935f
  45. B. Fan, C. A. Rusinek, C. H. Thompson, M. Setien, Y. Guo, R. Rechenberg, Y. Gong, A. J. Weber, M. F. Becker, E. Purcell and W. Li. (2020, Jul). Flexible, diamond-based microelectrodes fabricated using the diamond growth side for neural sensing. Microsystems & Nanoengineering. 6(1), Available: ARTN 42 10.1038/s41378-020-0155-1
  46. S. Tamaki, T. Kuki, T. Matsunaga, H. Mushiake, Y. Furusawa and Y. Haga. (2015, Aug). Flexible Tube-Shaped Neural Probe for Recording and Optical Stimulation of Neurons at Arbitrary Depths. Sensors and Materials. 27(7), pp. 507-523. Available: 10.18494/SAM.2015.1095
  47. Z. L. Xiang, J. Q. Liu and C. Lee. (2016, May). A flexible three-dimensional electrode mesh: An enabling technology for wireless brain-computer interface prostheses. Microsystems & Nanoengineering. 2, Available: ARTN 16012. 10.1038/micronano.2016.12
  48. C. Lu, S. Park, T. J. Richner, A. Derry, I. Brown, C. Hou, S. Y. Rao, J. Kang, C. T. Moritz, Y. Fink and P. Anikeeva. (2017, Mar). Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Science Advances. 3(3), Available: ARTN e1600955. 10.1126/sciadv.1600955
  49. H. Toda, T. Suzuki, H. Sawahata, K. Majima, Y. Kamitani and I. Hasegawa. (2011, Jan). Simultaneous recording of ECoG and intracortical neuronal activity using a flexible multichannel electrode-mesh in visual cortex. Neuroimage. 54(1), pp. 203-212. Available: 10.1016/j.neuroimage.2010.08.003
  50. X. L. Wei, L. Luan, Z. T. Zhao, X. Li, H. L. Zhu, O. Potnis and C. Xie. (2018, Jun). Nanofabricated Ultraflexible Electrode Arrays for High-Density Intracortical Recording. Advanced Science. 5(6), Available: ARTN 1700625. 10.1002/advs.201700625
  51. Y. C. Lu, H. M. Lyu, A. G. Richardson, T. H. Lucas and D. Kuzum. (2016, Sep). Flexible Neural Electrode Array Basedon Porous Graphene for Cortical Microstimulation and Sensing. Scientific Reports. 6, Available: ARTN 33526. 10.1038/srep33526
  52. M. Ryu, J. H. Yang, Y. Ahn, M. Sim, K. H. Lee, K. Kim, T. Lee, S. J. Yoo, S. Y. Kim, C. Moon, M. Je, J. W. Choi, Y. Lee and J. E. Jang. (2017, Mar). Enhancement of Interface Characteristics of Neural Probe Based on Graphene, ZnO Nanowires, and Conducting Polymer PEDOT. Acs Applied Materials & Interfaces. 9(12), pp. 10577-10586. Available: 10.1021/acsami.7b02975
  53. A. Oliveira, J. S. Ordonez, D. A. Vajari, M. Eickenscheidt and T. Stieglitz. (2016,Jun). Laser-induced carbon pyrolysis of electrodes for neural interface systems. European Journal of Translational Myology. 26(3), pp. 181-186. Available: 10.4081/ejtm.2016.6062