DOI QR코드

DOI QR Code

폴리디메틸실록산 기반 마이크로패턴 채널 시스템을 이용한 단일 세포의 극성 신호에 관한 연구

A Study on Single Cell Polarized Signals Using Polydimethylsiloxane-based Micropatterned Channel System

  • 서정수 (부산대학교 생명시스템학과) ;
  • 이찬빈 (부산대학교 생명시스템학과) ;
  • 판이자 (캘리포니아 샌디에고 대학교 공과대학 생명공학과) ;
  • 왕잉샤이오 (캘리포니아 샌디에고 대학교 공과대학 생명공학과) ;
  • 정영미 (부산대학교 생명시스템학과) ;
  • 김태진 (부산대학교 생명시스템학과)
  • Suh, Jung-Soo (Department of Integrated Biological Science, Pusan National University) ;
  • Lee, Chanbin (Department of Integrated Biological Science, Pusan National University) ;
  • Pan, Yijia (Department of Bioengineering, University of California at San Diego) ;
  • Wang, Yingxiao (Department of Bioengineering, University of California at San Diego) ;
  • Jung, Youngmi (Department of Integrated Biological Science, Pusan National University) ;
  • Kim, Tae-Jin (Department of Integrated Biological Science, Pusan National University)
  • 투고 : 2019.11.26
  • 심사 : 2019.12.17
  • 발행 : 2020.02.01

초록

본 연구에서는 폴리디메틸실록산(PDMS)과 모세관-미세몰딩(MIMIC) 기술을 활용하여 마이크로패턴 채널 시스템을 제작하고, 단일 세포 수준에서 극성화 패턴으로 형성되는 분자 신호를 고해상도 세포 이미징을 통해 분석하였다. 이 과정에서 혈소판유래성장인자(PDGF)가 처리된 세포에서는 세포 이동에 중요한 세 종류의 신호인 포스포이노시티드 3-인산화효소(PI3K), Rac 및 액틴(Actin) 신호가 선두(front)영역에서 후미(rear)영역에 비해 강하게 활성화 하는 데 반해, 마이오신 경쇄(MLC) 신호는 비특이적 경향성을 보여주었다. 본 연구 결과는 향후 마이크로패턴의 미세환경에서 세포 극성화 신호와 세포 이동과의 상관 관계를 연구하는 데 중요한 도움이 될 것으로 사료된다.

In this study, we produced the micropatterned channel system using polydimethylsiloxane (PDMS) and micromolding in capillaries (MIMIC) technology and evaluated cellular polarity signals through high-resolved imaging at the single-cell level. In cells treated with platelet-derived growth factor (PDGF), three types of key signals in cell migration; phosphoinositide 3-kinase (PI3 K), Rac, and Actin, were strongly activated in the front area compared to the rear region, whereas myosin light chain (MLC) showed no notable activity in the front and rear areas. Our results will, therefore, provide important information and methodology for studying the correlation between cell polarity signals and cell migration under the newly defined microenvironment.

키워드

참고문헌

  1. Lutolf, M. P. and Hubbell, J. A, "Synthetic Biomaterials as Instructive Extracellular Microenvironments for Morphogenesis in Tissue Engineering," Nat. Biotechnol., 23(1), 47-55(2005). https://doi.org/10.1038/nbt1055
  2. Rice, J. J., Martino, M. M., De Laporte, L., Tortelli, F., Briquez, P. S. and Hubbell, J. A., "Engineering the Regenerative Microenvironment with Biomaterials," Adv. Healthc. Mater., 2(1), 57-71(2013). https://doi.org/10.1002/adhm.201200197
  3. Liu, W. F. and Chen, C. S., "Engineering Biomaterials to Control Cell Function," Materials Today, 8(12), 28-35(2005). https://doi.org/10.1016/S1369-7021(05)71222-0
  4. Shoichet, M. S., "Polymer Scaffolds for Biomaterials Applications," Macromolecules, 43(2), 581-591(2009). https://doi.org/10.1021/ma901530r
  5. Little, L., Healy, K. E. and Schaffer, D., "Engineering Biomaterials for Synthetic Neural Stem Cell Microenvironments," Chemical Reviews, 108(5), 1787-1796(2008). https://doi.org/10.1021/cr078228t
  6. Stroka, K. M., Gu, Z., Sun, S. X. and Konstantopoulos, K., "Bioengineering Paradigms for Cell Migration in Confined Microenvironments," Current Opinion in Cell Biology, 30, 41-50(2014). https://doi.org/10.1016/j.ceb.2014.06.001
  7. McLennan, R., Dyson, L., Prather, K. W., Morrison, J. A., Baker, R. E., Maini, P. K. and Kulesa, P. M., "Multiscale Mechanisms of Cell Migration During Development: Theory and Experiment," Development, 139(16), 2935-2944(2012). https://doi.org/10.1242/dev.081471
  8. Polacheck, W. J., Zervantonakis, I. K. and Kamm, R. D., "Tumor Cell Migration in Complex Microenvironments," Cellular and Molecular Life Sciences, 70(8), 1335-1356(2013). https://doi.org/10.1007/s00018-012-1115-1
  9. Clark, A. G. and Vignjevic, D. M., "Modes of Cancer Cell Invasion and the Role of the Microenvironment," Current Opinion in Cell Biology, 36, 13-22(2015). https://doi.org/10.1016/j.ceb.2015.06.004
  10. Qin, D., Xia, Y. and Whitesides, G. M., "Soft Lithography for Micro-and Nanoscale Patterning," Nature Protocols, 5(3), 491(2010). https://doi.org/10.1038/nprot.2009.234
  11. Ghibaudo, M., Trichet, L., Le Digabel, J., Richert, A., Hersen, P. and Ladoux, B., "Substrate Topography Induces a Crossover from 2D to 3D Behavior in Fibroblast Migration," Biophysical Journal, 97(1), 357-368(2009). https://doi.org/10.1016/j.bpj.2009.04.024
  12. Kim, D. H., Provenzano, P. P., Smith, C. L. and Levchenko, A., "Matrix Nanotopography as a Regulator of Cell Function," The Journal of Cell Biology, 197(3), 351-360(2012). https://doi.org/10.1083/jcb.201108062
  13. Vozzi, G., Flaim, C., Ahluwalia, A., and Bhatia, S., "Fabrication of PLGA Scaffolds Using Soft Lithography and Microsyringe Deposition," Biomaterials, 24(14), 2533-2540(2013). https://doi.org/10.1016/S0142-9612(03)00052-8
  14. Kamei, K. I., Mashimo, Y., Koyama, Y., Fockenberg, C., Nakashima, M., Nakajima, M. and Chen, Y., "3D Printing of Soft Lithography Mold for Rapid Production of Polydimethylsiloxane-based Microfluidic Devices for Cell Stimulation with Concentration Gradients," Biomedical Microdevices, 17(2), 36(2015). https://doi.org/10.1007/s10544-015-9928-y
  15. Dewez, J. L., Lhoest, J. B., Detrait, E., Berger, V., Dupont-Gillain, C. C., Vincent, L. M. and Rouxhet, P. G., "Adhesion of Mammalian Cells to Polymer Surfaces: from Physical Chemistry of Surfaces to Selective Adhesion on Defined Patterns," Biomaterials, 19(16), 1441-1445(1998). https://doi.org/10.1016/S0142-9612(98)00055-6
  16. Veevers-Lowe, J., Ball, S. G., Shuttleworth, A. and Kielty, C. M., "Mesenchymal Stem Cell Migration is Regulated by Fibronectin Through ${\alpha}5{\beta}1$-integrin-mediated Activation of PDGFR-${\beta}$ and Potentiation of Growth Factor Signals," J. Cell. Sci., 124(8), 1288-1300(2011). https://doi.org/10.1242/jcs.076935
  17. Tallquist, M. and Kazlauskas, A., "PDGF Signaling in Cells and Mice," Cytokine & Growth Factor Reviews, 15(4), 205-213(2014). https://doi.org/10.1016/j.cytogfr.2004.03.003
  18. Pertz, O., Hodgson, L., Klemke, R. L. and Hahn, K. M., "Spatiotemporal Dynamics of RhoA Activity in Migrating Cells," Nature, 440(7087), 1069-1072(2006). https://doi.org/10.1038/nature04665
  19. Duchek, P., Somogyi, K., Jekely, G., Beccari, S. and Rorth, P., "Guidance of Cell Migration by the Drosophila PDGF/VEGF Receptor," Cell, 107(1), 17-26(2001). https://doi.org/10.1016/S0092-8674(01)00502-5
  20. Yamaguchi, H. and Condeelis, J., "Regulation of the Actin Cytoskeleton in Cancer Cell Migration and Invasion," Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1773(5), 642-652(2007). https://doi.org/10.1016/j.bbamcr.2006.07.001
  21. Gardel, M. L., Schneider, I. C., Aratyn-Schaus, Y. and Waterman, C. M., "Mechanical Integration of Actin and Adhesion Dynamics in Cell Migration," Annual Review of Cell and Developmental Biology, 26, 315-333(2010). https://doi.org/10.1146/annurev.cellbio.011209.122036
  22. Plotnikov, S. V., Pasapera, A. M., Sabass, B. and Waterman, C. M., "Force Fluctuations Within Focal Adhesions Mediate ECMRigidity Sensing to Guide Directed Cell Migration," Cell, 151(7), 1513-1527(2012). https://doi.org/10.1016/j.cell.2012.11.034
  23. Ridley, A. J., "Rho GTPases and Cell Migration," Journal of Cell Science, 114(15), 2713-2722(2001). https://doi.org/10.1242/jcs.114.15.2713