DOI QR코드

DOI QR Code

실로퓨트에 의한 아세나프텐 흡착에 관한 등온흡착식, 동역학 및 열역학적 특성

Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Acenaphthene onto Sylopute

  • 조다님 (공주대학교 화학공학부) ;
  • 김진현 (공주대학교 화학공학부)
  • Cho, Da-Nim (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Hyun (Department of Chemical Engineering, Kongju National University)
  • 투고 : 2019.11.29
  • 심사 : 2019.12.23
  • 발행 : 2020.02.01

초록

상용흡착제 실로퓨트에 의한 Taxus chinensis 유래 주요 타르 성분인 아세나프텐의 흡착 특성을 조사하였다. 초기 아세나프텐 농도, 흡착 온도 및 시간에 따른 흡착 데이터를 Langmuir, Freundlich, Temkin 및 Dubinin-Radushkevich 등온흡착식에 적용한 결과, Langmuir 등온흡착식이 가장 적합하였다. 동역학적 흡착 데이터는 유사 이차 속도식에 가장 잘 따름을 알 수 있었다. 열역학적 파라미터로부터 흡착 공정이 적합하며 비자발적 발열이었다. 등량흡착열은 흡착량에 의존하지 않아 실로퓨트의 표면에너지가 균일함을 알 수 있었다.

The adsorption characteristics of the major tar compound, acenaphthene, derived from Taxus chinensis by the commercial adsorbent Sylopute were investigated using different parameters such as initial acenaphthene concentration, adsorption temperature, and contact time. Out of Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models, adsorption data were best described by Langmuir isotherm. The adsorption kinetics was evaluated by pseudo-first-order, pseudo-second-order and intraparticle diffusion models. The pseudo-second-order model was found to explain the adsorption kinetics most effectively. Thermodynamic parameters revealed the feasibility, nonspontaneity and exothermic nature of adsorption. In addition, the isosteric heat of adsorption was independent of surface loading indicating the Sylopute used as an energetically homogeneous surface.

키워드

참고문헌

  1. Priyadarshini, K. and Keerthi Aparajitha, U., "Paclitaxel Against Cancer: A Short Review," Med. Chem., 2, 139-141(2012). https://doi.org/10.2174/157340606776056188
  2. Kang, H. J. and Kim, J. H., "Adsorption Kinetics, Mechanism, Isotherm, and Thermodynamic Analysis of Paclitaxel from Extracts of Taxus chinensis Cell Cultures Onto Sylopute," Biotechnol. Bioproc. Eng., 24, 513-521(2019). https://doi.org/10.1007/s12257-019-0001-1
  3. Pyo, S. H., Park, H. B., Song, B. K., Han, B. H. and Kim, J. H., "A Large-scale Purification of Paclitaxel from Cell Cultures of Taxus chinensis," Process Biochem., 39, 1985-1991(2004). https://doi.org/10.1016/j.procbio.2003.09.028
  4. Lee, C. G. and Kim, J. H., "A Kinetic and Thermodynamic Study of Fractional Precipitation of Paclitaxel from Taxus Chinensis," Process Biochem., 59, 216-222(2017). https://doi.org/10.1016/j.procbio.2017.05.016
  5. Kim, G. J., Park, G. Y. and Kim, J. H., "Identification and Quantification of Tar Compounds in Plant Cell Cultures of Taxus chinensis," Korean J. Microbiol. Biotechnol., 41, 272-277(2013). https://doi.org/10.4014/kjmb.1303.03001
  6. Park, G. Y., Kim, G. J. and Kim, J. H., "Effect of Tar Compounds on the Purification Efficiency of Paclitaxel from Taxus chinensis," J. Ind. Eng. Chem., 21, 151-154(2015). https://doi.org/10.1016/j.jiec.2014.03.042
  7. Oh, H. J., Jang, H. R., Jung, K. Y. and Kim, J. H., "Evaluation of Adsorbents for Separation and Purification of Paclitaxel from Plant Cell Cultures," Process Biochem., 47, 331-334(2012). https://doi.org/10.1016/j.procbio.2011.11.004
  8. Lee, C. G. and Kim, J. H., "Optimization of Adsorbent Treatment Process for the Purification of Paclitaxel from Plant Cell Cultures of Taxus chinensis," Korean Chem. Eng. Res., 52, 497-502(2014). https://doi.org/10.9713/kcer.2014.52.4.497
  9. Bang, S. Y. and Kim, J. H., "Isotherm, Kinetic, and Thermodynamic Studies on the Adsorption Behavior of 10-deacetylpaclitaxel Onto Sylopute," Biotechnol. Bioproc. Eng., 22, 620-630(2017). https://doi.org/10.1007/s12257-017-0247-4
  10. Lim, Y. S. and Kim, J. H., "Isotherm, Kinetic, and Thermodynamic Studies on the Adsorption of 13-dehydroxybaccatin III from Taxus chinensis Onto Sylopute," J. Chem. Thermodyn., 115, 261-268(2017). https://doi.org/10.1016/j.jct.2017.08.009
  11. Park, S. H. and Kim, J. H., "Isotherm, Kinetic, and Thermodynamic Characteristics for Adsorption of 2,5-xylenol Onto Activated Carbon," Biotechnol. Bioproc. Eng., 23, 541-549(2018). https://doi.org/10.1007/s12257-018-0259-8
  12. Yang, J. W. and Kim, J. H., "Evaluation of Adsorption Characteristics of 2-picoline Onto Sylopute," Korean Chem. Eng. Res., 57, 210-218(2019).
  13. Kim, Y. S. and Kim, J. H., "Isotherm, Kinetic and Thermodynamic Studies on the Adsorption of Paclitaxel Onto Sylopute," J. Chem. Thermodyn., 130, 104-113(2019). https://doi.org/10.1016/j.jct.2018.10.005
  14. Kojic, A. B., Planinic, M., Tomas, S., Bilic, M. and Veli, D., "Study of Solid-liquid Extraction Kinetics of Total Polyphenols from Grape Seeds," J. Food Eng., 81, 236-242(2007). https://doi.org/10.1016/j.jfoodeng.2006.10.027
  15. Perez Marin, A. B., Aguilar, M. I., Meseguer, V. F., Ortuno, J. F., Saez, J. and Llorens, M., "Biosorption of Chromium (III) by Orange (Citrus cinensis) Waste: Batch and Continuous Studies," Chem. Eng. J., 155, 199-206(2009). https://doi.org/10.1016/j.cej.2009.07.034
  16. Langergren, S. and Svenska, B. K., "Zur Theorie Der Sogenannten Adsorption Gelöester Stoffe," Veterskapsakad Handlingar, 24, 1-39(1898).
  17. Ho, Y. S. and McKay, G., "Sorption of Dye from Aqueous Solution by Peat," Chem. Eng. J., 70, 115-124(1998). https://doi.org/10.1016/S0923-0467(98)00076-1
  18. Weber, W. J. and Morris, J. C., "Kinetics of Adsorption on Carbon from Solution," J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89, 31-59 (1963). https://doi.org/10.1061/JSEDAI.0000430
  19. Wu, F. C., Tseng, R. L. and Juang, R. S., "Comparisons of Porous and Adsorption Properties of Carbons Activated by Steam and KOH," J. Colloid Interface Sci., 283, 49-56(2005). https://doi.org/10.1016/j.jcis.2004.08.037
  20. Saha, P. and Chowdhury, S., "Insight Into Adsorption Thermodynamics," Prof. Mizutani Tadashi (Ed.), ISBN: 978-953-307-544-0, InTech, Available from: http://www.intechopen.com/books/ thermodynami-cs/insight-into-adsorption-thermodynamics (2011).
  21. Shin, H. S. and Kim, J. H., "Isotherm, Kinetic and Thermodynamic Characteristics of Adsorption of Paclitaxel Onto Daion HP-20," Process Biochem., 51, 917-924(2016). https://doi.org/10.1016/j.procbio.2016.03.013
  22. Monika, J., Garg, V. K. and Kadirvelu, K., "Chromium (VI) Removal from Aqueous Solution, Using Sunflower Stem Waste," J. Hazard. Mater., 162, 365-372(2009). https://doi.org/10.1016/j.jhazmat.2008.05.048
  23. Dogan, M., Alkan, M., Demirbas, O., Ozdemir, Y. and Ozmetin, C., "Adsorption Kinetics of Maxilon Blue GRL Onto Sepiolite From Aqueous Solutions," Chem. Eng. J., 124, 89-101(2006). https://doi.org/10.1016/j.cej.2006.08.016
  24. Cheung, W. H., Szeto, Y. S. and McKay, G., "Intraparticle Diffusion Processes During Acid Dye Adsorption Onto Chitosan," Bioresour. Technol., 98, 2897-2904(2007). https://doi.org/10.1016/j.biortech.2006.09.045
  25. Hata, H., Saeki, S., Kimura, T., Sugahara, Y. and Kuroda, K., "Adsorption of Taxol Into Ordered Mesoporous Silica with Various Pore Diameters," Chem Mater., 11, 1110-1119(1999). https://doi.org/10.1021/cm981061n
  26. Boparai, H. K., Joseph, M. and O'Carroll, D. M., "Kinetics and Thermodynamics of Cadmium Ion Removal by Adsorption Onto Nano Zerovalent Iron Particles," J. Hazard. Mater., 186, 458-465 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.029
  27. Zulfikar, M. A., "Effect of Temperature on Adsorption of Humic Acid from Peat Water Onto Pyrophyllite," Int. J. Chem., Environ. Biol. Sci., 1, 88-90(2013).
  28. Dogan, M., Abak, H. and Alkan, M., "Adsorption of Methylene Blue Onto Hazelnut Shell: Kinetics, Mechanism and Activation Parameters," J. Hazard. Mater., 164, 172-181(2009). https://doi.org/10.1016/j.jhazmat.2008.07.155
  29. Chowdhury, S., Mishra, R., Saha, P. and Kushwaha, P., "Adsorption Thermodynamics, Kinetics and Isosteric Heat of Adsorption of Malachite Green Onto Chemically Modified Rice Husk," Desalination, 265, 159-168(2011). https://doi.org/10.1016/j.desal.2010.07.047

피인용 문헌

  1. Kinetics, Mechanism, and Thermodynamics Studies of Vacuum Drying of Biomass from Taxus chinensis Cell Cultures vol.25, pp.2, 2020, https://doi.org/10.1007/s12257-020-0055-0
  2. Development of Drying Process for Removal of Residual Moisture from Biomass Pretreated with Ethanol and Its Kinetic and Thermodynamic Analysis vol.26, pp.5, 2021, https://doi.org/10.1007/s12257-021-0193-z