DOI QR코드

DOI QR Code

Partial Inverse Traveling Salesman Problems on the Line

  • Chung, Yerim (School of Business, Yonsei University) ;
  • Park, Myoung-Ju (Dept. of Industrial and Management Systems Engineering, Kyung Hee University)
  • 투고 : 2019.10.10
  • 심사 : 2019.11.05
  • 발행 : 2019.11.29

초록

부분역최적화는 역최적화의 흥미로운 변형으로, 주어진 최적화문제와 그 문제의 부분해가 주어지면 이 부분해가 최적해에 포함되도록 문제를 최소한으로 수정하는 문제이다. 이 논문은 라인위에서 정의되는 순환외판원문제(TSP)를 다루는데, 이는 배달시스템, 창고 선반에서 물건을 수집하는 것, 등의 많은 응용을 가진다. 라인 위에서 위치하는 n개의 일이 주어지고 이 중 연속적으로 처리해야하는 일 k개가 부분적으로 주어진다. 각각의 일은 라인 위의 특정 장소에 위치하고 라인을 움직이는 서버에 의해 처리되어야 한다. 우리의 임무는 k개의 일이 최적해에서 연속적으로 처리되도록 n개의 일의 위치를 라인 위에서 최소한으로 조정하는 것이다. 이 논문에서 이 문제와 이 문제의 다양한 변종을 다항시간 내에 푸는 알고리즘을 개발한다. 구체적으로, 서버가 특정한 Forward Trip이라는 특정한 내부 알고리즘을 사용하는 경우와 일반적인 최적 알고리즘을 사용하는 경우에 대한 부분역최적화를 다룬다.

The partial inverse optimization problem is an interesting variant of the inverse optimization problem in which the given instance of an optimization problem need to be modified so that a prescribed partial solution can constitute a part of an optimal solution in the modified instance. In this paper, we consider the traveling salesman problem defined on the line (TSP on the line) which has many applications such as item delivery systems, the collection of objects from storage shelves, and so on. It is worth studying the partial inverse TSP on the line, defined as follows. We are given n requests on the line, and a sequence of k requests that need to be served consecutively. Each request has a specific position on the real line and should be served by the server traveling on the line. The task is to modify as little as possible the position vector associated with n requests so that the prescribed sequence can constitute a part of the optimal solution (minimum Hamiltonian cycle) of TSP on the line. In this paper, we show that the partial inverse TSP on the line and its variant can be solved in polynomial time when the sever is equiped with a specific internal algorithm Forward Trip or with a general optimal algorithm.

키워드

참고문헌

  1. R. K. Ahuja and J. B. Orlin, "Inverse Optimization, Operations Research," Vol. 49, No. 5, pp. 771-783, October 2001. DOI: 10.1287/opre.49.5.771.10607
  2. C. Heuberger, “Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results,” Journal of Combinatorial Optimization, Vol. 8, No. 3, pp. 329-361, September 2004. DOI: 10.1023/B:JOCO.0000038914.26975.9b
  3. J. Zhang and Z. Liu, “A General Model of Some Inverse Combinatorial Optimization Problems and its Solution Method under $l{\infty}$-norm,” Journal of Combinatorial Optimization, Vol. 6, No. 2, pp. 207-227, June 2002. DOI: 10.1023/A:1013807829021
  4. S. Xu and J. Zhang, “An Inverse Problem of the Weighted Shortest Path Problem,” Japan Journal of Industrial and Applied Mathematics, Vol. 12, No. 1, pp. 47-59, February 1995. DOI: 10.1007/BF03167381
  5. R.K. Ahuja and J.B. Orlin, “A Faster Algorithm for the Inverse Spanning Tree Problem,” Journal of Algorithms, Vol. 34, No. 1, pp. 177-193, January 2000. DOI: 10.1006/jagm.1999.1052
  6. Y. Chung, and M. Demange, "The 0-1 Inverse Maximum Stable Set Problem," Discrete Applied Mathematics, Vol. 156, No. 13, pp. 2501-2516, July 2008. DOI: 10.1016/j.dam.2008.03.015
  7. Y. Chung, J.F. Culus, and M. Demange, "Inverse Chromatic Number Problems in Interval and Permutation Graphs," European Journal of Operational Research Vol. 243, pp. 763-773, June 2015. DOI: 10.1016/j.ejor.2014.12.028
  8. Y. Chung, and M. Demange, "On Inverse Traveling Salesman Problems," 4OR - A Quarterly Journal of Operations Research, Vol. 10, pp. 193-209, June 2012. DOI: 10.1007/s10288-011-0194-4
  9. D. Bertsimas, V. Gupa and I.Ch. Paschlidis, "Inverse Optimization: A New Perspecive on the Black-Litterman Model," Operations Research, Vol. 60, No. 6, pp. 1389-1403, November-December 2012. DOI: 10.1287/opre.1120.1115
  10. A. Aswani, Z.-J. Shen, A. Siddiq, “Inverse Optimization with Noisy Data,” Operations Research, Vol. 66, No. 3, pp. 597-892, May-June 2018. DOI: 10.1287/opre.2017.1705
  11. T.C.Y. Chan, T. Lee, D. Terekhov, "Inverse optimization: Closed-form solutions, geometry, and goodness of fit," Management Science, Vol. 65, No. 3, pp. 955-1453, March 2019. DOI: 10.1287/mnsc.2017.2992
  12. P. M Esfahani, S. Shafieezadeh-Abadeh, G.A. Hanasusanto, D. Kuhn, “Data-driven inverse optimization with imperfect information,” Mathematical Programming, Vol. 167, No. 1, pp. 191-234, January 2018. DOI: 10.1007/s10107-017-1216-6
  13. K. Ghobadi, T. Lee, H. Mahmoudzadeh, D. Terekhov, “Robust inverse optimization,” Operations Research Letters, Vol. 46, No. 3, pp. 339-344, May 2018. DOI: 10.1016/j.orl.2018.03.007
  14. J. Zhang and X. Yang, “Partial Inverse Assignment Problem under L1-Norm,” Operations Research Letters, Vol. 35, No. 1, pp. 23-28, January 2007. DOI: 10.1016/j.orl.2005.12.003
  15. X.G. Yang, “Complexity of Partial Inverse Assignment Problem and Partial Inverse Cut Problem,” RAIRO Opereations Research, Vol. 35, No. 1, pp. 117-126, January March 2001. DOI: 10.1051/ro:2001106
  16. Lai T.C., Orlin J.B., "The Complexity of Preprocessing," Research Report of Sloan School of Management, MIT, November 2003.
  17. Y. Chung, and M. Park, "Partial Inverse Traveling Salesman Problem," accepted at Journal of the KORMS Society, October 2019.
  18. M.R. Garey, and D.S. Johnson, "Computers and Intractability - A Guide to The Theory of NP-completeness," San Francisco, Freeman, 1979.
  19. S. Angelov, B. Harb, S. Kannan, and L.S. Wang, "Weighted Isotonic Regression under the l1-Norm," In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 783-791, January 2006.
  20. N. Chakravarti, “Isotonic Median Regression: a Linear Programming Approach,” Mathematics of Operations Research, Vol. 14, No. 2, pp. 303-308, May 1989. DOI: 10.1287/moor.14.2.303
  21. T. Robertson and F. Wright, “Algorithms in Order Restricted Statistical Inference and the Cauchy Mean Value Property,” Annals of Statistics, Vol. 8, No. 3, pp. 645-651, May 1980. DOI: 10.1214/aos/1176345014