References
- Aoki, M., Aoki, H., Ramanathan, R., Hait, N. C. and Takabe, K. (2016) Corrigendum to "sphingosine-1-phosphate signaling in immune cells and inflammation: roles and therapeutic potential". Mediators Inflamm. 2016, 2856829.
- Block, M. L., Zecca, L. and Hong, J. S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57-69. https://doi.org/10.1038/nrn2038
- Butovsky, O., Ziv, Y., Schwartz, A., Landa, G., Talpalar, A. E., Pluchino, S., Martino, G. and Schwartz, M. (2006) Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol. Cell. Neurosci. 31, 149-160. https://doi.org/10.1016/j.mcn.2005.10.006
- Byles, V., Covarrubias, A. J., Ben-Sahra, I., Lamming, D. W., Sabatini, D. M., Manning, B. D. and Horng, T. (2013) The TSC-mTOR pathway regulates macrophage polarization. Nat. Commun. 4, 2834. https://doi.org/10.1038/ncomms3834
- Cherry, J. D., Olschowka, J. A. and O'Banion, M. K. (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation 11, 98. https://doi.org/10.1186/1742-2094-11-98
- Chi, H. (2011) Sphingosine-1-phosphate and immune regulation: trafficking and beyond. Trends. Pharmacol. Sci. 32, 16-24. https://doi.org/10.1016/j.tips.2010.11.002
- Choi, J. W. and Chun, J. (2013) Lysophospholipids and their receptors in the central nervous system. Biochim. Biophys. Acta 1831, 20-32. https://doi.org/10.1016/j.bbalip.2012.07.015
- Cyster, J. G. and Schwab, S. R. (2012) Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30, 69-94. https://doi.org/10.1146/annurev-immunol-020711-075011
- Czech, B., Pfeilschifter, W., Mazaheri-Omrani, N., Strobel, M. A., Kahles, T., Neumann-Haefelin, T., Rami, A., Huwiler, A. and Pfeilschifter, J. (2009) The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochem. Biophys. Res. Commun. 389, 251-256. https://doi.org/10.1016/j.bbrc.2009.08.142
- Doll, D. N., Barr, T. L. and Simpkins, J. W. (2014) Cytokines: their role in stroke and potential use as biomarkers and therapeutic targets. Aging Dis. 5, 294-306. https://doi.org/10.14336/AD.2014.0500294
- Fu, Y., Hao, J., Zhang, N., Ren, L., Sun, N., Li, Y. J., Yan, Y., Huang, D., Yu, C. and Shi, F. D. (2014) Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 71, 1092-1101. https://doi.org/10.1001/jamaneurol.2014.1065
- Gabriel, C., Justicia, C., Camins, A. and Planas, A. M. (1999) Activation of nuclear factor-kappaB in the rat brain after transient focal ischemia. Brain Res. Mol. Brain Res. 65, 61-69. https://doi.org/10.1016/S0169-328X(98)00330-1
- Gaire, B. P., Kwon, O. W., Park, S. H., Chun, K. H., Kim, S. Y., Shin, D. Y. and Choi, J. W. (2015) Neuroprotective effect of 6-paradol in focal cerebral ischemia involves the attenuation of neuroinflammatory responses in activated microglia. PLoS ONE 10, e0120203. https://doi.org/10.1371/journal.pone.0120203
- Gaire, B. P., Lee, C. H., Sapkota, A., Lee, S. Y., Chun, J., Cho, H. J., Nam, T. G. and Choi, J. W. (2018a) Identification of sphingosine 1-phosphate receptor subtype 1 (S1P1) as a pathogenic factor in transient focal cerebral ischemia. Mol. Neurobiol. 55, 2320-2332. https://doi.org/10.1007/s12035-017-0468-8
- Gaire, B. P., Song, M. R. and Choi, J. W. (2018b) Sphingosine 1-phosphate receptor subtype 3 (S1P3) contributes to brain injury after transient focal cerebral ischemia via modulating microglial activation and their M1 polarization. J. Neuroinflammation 15, 284. https://doi.org/10.1186/s12974-018-1323-1
- Gu, L., Huang, B., Shen, W., Gao, L., Ding, Z., Wu, H. and Guo, J. (2013) Early activation of nSMase2/ceramide pathway in astrocytes is involved in ischemia-associated neuronal damage via inflammation in rat hippocampi. J. Neuroinflammation 10, 109.
- Harari, O. A. and Liao, J. K. (2010) NF-kappaB and innate immunity in ischemic stroke. Ann. N. Y. Acad. Sci. 1207, 32-40. https://doi.org/10.1111/j.1749-6632.2010.05735.x
- Hu, X., Leak, R. K., Shi, Y., Suenaga, J., Gao, Y., Zheng, P. and Chen, J. (2015) Microglial and macrophage polarization-new prospects for brain repair. Nat. Rev. Neurol. 11, 56-64. https://doi.org/10.1038/nrneurol.2014.207
- Hu, X., Li, P., Guo, Y., Wang, H., Leak, R. K., Chen, S., Gao, Y. and Chen, J. (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43, 3063-3070. https://doi.org/10.1161/STROKEAHA.112.659656
- Jiang, B., Brecher, P. and Cohen, R. A. (2001) Persistent activation of nuclear factor-kappaB by interleukin-1beta and subsequent inducible NO synthase expression requires extracellular signal-regulated kinase. Arterioscler. Thromb. Vasc. Biol. 21, 1915-1920. https://doi.org/10.1161/hq1201.099424
- Kim, G. S., Yang, L., Zhang, G., Zhao, H., Selim, M., McCullough, L. D., Kluk, M. J. and Sanchez, T. (2015) Critical role of sphingosine- 1-phosphate receptor-2 in the disruption of cerebrovascular integrity in experimental stroke. Nat. Commun. 6, 7893. https://doi.org/10.1038/ncomms8893
- Kraft, P., Gob, E., Schuhmann, M. K., Gobel, K., Deppermann, C., Thielmann, I., Herrmann, A. M., Lorenz, K., Brede, M., Stoll, G., Meuth, S. G., Nieswandt, B., Pfeilschifter, W. and Kleinschnitz, C. (2013) FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-inflammation but not by direct neuroprotection. Stroke 44, 3202-3210. https://doi.org/10.1161/STROKEAHA.113.002880
- Lan, X., Han, X., Li, Q., Yang, Q. W. and Wang, J. (2017) Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat. Rev. Neurol. 13, 420-433. https://doi.org/10.1038/nrneurol.2017.69
- Mattson, M. P. and Camandola, S. (2001) NF-kappaB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest. 107, 247-254. https://doi.org/10.1172/JCI11916
- Mirendil, H., Thomas, E. A., De Loera, C., Okada, K., Inomata, Y. and Chun, J. (2015) LPA signaling initiates schizophrenia-like brain and behavioral changes in a mouse model of prenatal brain hemorrhage. Translational. Psychiatry 5, e541. https://doi.org/10.1038/tp.2015.33
- Moon, E., Han, J. E., Jeon, S., Ryu, J. H., Choi, J. W. and Chun, J. (2015) Exogenous S1P exposure potentiates ischemic stroke damage that is reduced possibly by inhibiting S1P receptor signaling. Mediators Inflamm. 2015, 492659.
- Nayak, D., Huo, Y., Kwang, W. X., Pushparaj, P. N., Kumar, S. D., Ling, E. A. and Dheen, S. T. (2010) Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience 166, 132-144. https://doi.org/10.1016/j.neuroscience.2009.12.020
- Nazari, M., Keshavarz, S., Rafati, A., Namavar, M. R. and Haghani, M. (2016) Fingolimod (FTY720) improves hippocampal synaptic plasticity and memory deficit in rats following focal cerebral ischemia. Brain Res. Bull. 124, 95-102. https://doi.org/10.1016/j.brainresbull.2016.04.004
- Noda, H., Takeuchi, H., Mizuno, T. and Suzumura, A. (2013) Fingolimod phosphate promotes the neuroprotective effects of microglia. J. Neuroimmunol. 256, 13-18. https://doi.org/10.1016/j.jneuroim.2012.12.005
- Olson, C. M., Hedrick, M. N., Izadi, H., Bates, T. C., Olivera, E. R. and Anguita, J. (2007) p38 mitogen-activated protein kinase controls NF-kappaB transcriptional activation and tumor necrosis factor alpha production through RelA phosphorylation mediated by mitogen- and stress-activated protein kinase 1 in response to Borrelia burgdorferi antigens. Infect. Immun. 75, 270-277. https://doi.org/10.1128/IAI.01412-06
-
Pan, Y., Zhang, X., Wang, Y., Cai, L., Ren, L., Tang, L., Wang, J., Zhao, Y., Wang, Y., Liu, Q., Li, X. and Liang, G. (2013) Targeting JNK by a new curcumin analog to inhibit NF-kB
${\kappa}B$ -mediated expression of cell adhesion molecules attenuates renal macrophage infiltration and injury in diabetic mice. PLoS ONE 8, e79084. https://doi.org/10.1371/journal.pone.0079084 - Patel, A. R., Ritzel, R., McCullough, L. D. and Liu, F. (2013) Microglia and ischemic stroke: a double-edged sword. Int. J. Physiol. Pathophysiol. Pharmacol. 5, 73-90.
- Qin, C., Fan, W. H., Liu, Q., Shang, K., Murugan, M., Wu, L. J., Wang, W. and Tian, D. S. (2017) Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway. Stroke 48, 3336-3346. https://doi.org/10.1161/STROKEAHA.117.018505
- Rothhammer, V., Kenison, J. E., Tjon, E., Takenaka, M. C., de Lima, K. A., Borucki, D. M., Chao, C. C., Wilz, A., Blain, M., Healy, L., Antel, J. and Quintana, F. J. (2017) Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation. Proc. Natl. Acad. Sci. U.S A. 114, 2012-2017.
- Sapkota, A., Gaire, B. P., Cho, K. S., Jeon, S. J., Kwon, O. W., Jang, D. S., Kim, S. Y., Ryu, J. H. and Choi, J. W. (2017) Eupatilin exerts neuroprotective effects in mice with transient focal cerebral ischemia by reducing microglial activation. PLoS ONE 12, e0171479. https://doi.org/10.1371/journal.pone.0171479
- Tam, W. Y. and Ma, C. H. (2014) Bipolar/rod-shaped microglia are proliferating microglia with distinct M1/M2 phenotypes. Sci. Rep. 4, 7279. https://doi.org/10.1038/srep07279
- Thored, P., Heldmann, U., Gomes-Leal, W., Gisler, R., Darsalia, V., Taneera, J., Nygren, J. M., Jacobsen, S. E., Ekdahl, C. T., Kokaia, Z. and Lindvall, O. (2009) Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 57, 835-849. https://doi.org/10.1002/glia.20810
- Tsai, H. C. and Han, M. H. (2016) Sphingosine-1-phosphate (S1P) and S1P signaling pathway: therapeutic targets in autoimmunity and inflammation. Drugs 76, 1067-1079. https://doi.org/10.1007/s40265-016-0603-2
- Vergadi, E., Ieronymaki, E., Lyroni, K., Vaporidi, K. and Tsatsanis, C. (2017) Akt signaling pathway in macrophage activation and M1/M2 polarization. J. Immunol. 198, 1006-1014. https://doi.org/10.4049/jimmunol.1601515
- Walker, D. G. and Lue, L. F. (2015) Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res. Ther. 7, 56. https://doi.org/10.1186/s13195-015-0139-9
- Wang, P., He, Y., Li, D., Han, R., Liu, G., Kong, D. and Hao, J. (2016) Class I PI3K inhibitor ZSTK474 mediates a shift in microglial/macrophage phenotype and inhibits inflammatory response in mice with cerebral ischemia/reperfusion injury. J. Neuroinflammation 13, 192. https://doi.org/10.1186/s12974-016-0660-1
- Xia, C. Y., Zhang, S., Gao, Y., Wang, Z. Z. and Chen, N. H. (2015) Selective modulation of microglia polarization to M2 phenotype for stroke treatment. Int. Immunopharmacol. 25, 377-382. https://doi.org/10.1016/j.intimp.2015.02.019
- Xiong, X. Y., Liu, L. and Yang, Q. W. (2016) Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog. Neurobiol. 142, 23-44. https://doi.org/10.1016/j.pneurobio.2016.05.001
- Zhang, C., Zhu, Y., Wang, S., Zachory Wei, Z., Jiang, M. Q., Zhang, Y., Pan, Y., Tao, S., Li, J. and Wei, L. (2018) Temporal gene expression profiles after focal cerebral ischemia in mice. Aging Dis. 9, 249-261. https://doi.org/10.14336/AD.2017.0424
- Zhang, G., Yang, L., Kim, G. S., Ryan, K., Lu, S., O'Donnell, R. K., Spokes, K., Shapiro, N., Aird, W. C., Kluk, M. J., Yano, K. and Sanchez, T. (2013) Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation. Blood 122, 443-455.
- Zhou, S., Zhu, W., Zhang, Y., Pan, S. and Bao, J. (2018) S100B promotes microglia M1 polarization and migration to aggravate cerebral ischemia. Inflamm. Res. 67, 937-949. https://doi.org/10.1007/s00011-018-1187-y
- Zhu, Z., Fu, Y., Tian, D., Sun, N., Han, W., Chang, G., Dong, Y., Xu, X., Liu, Q., Huang, D., and Shi, F. D. (2015) Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke: a pilot trial. Circulation 132, 1104-1112. https://doi.org/10.1161/CIRCULATIONAHA.115.016371
Cited by
- S1P2 contributes to microglial activation and M1 polarization following cerebral ischemia through ERK1/2 and JNK vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-48609-z
- S1P/S1P Receptor Signaling in Neuromuscolar Disorders vol.20, pp.24, 2019, https://doi.org/10.3390/ijms20246364
- Sphingosine-1-Phosphate in the Tumor Microenvironment: A Signaling Hub Regulating Cancer Hallmarks vol.9, pp.2, 2020, https://doi.org/10.3390/cells9020337
- The S1P–S1PR Axis in Neurological Disorders—Insights into Current and Future Therapeutic Perspectives vol.9, pp.6, 2020, https://doi.org/10.3390/cells9061515
- Kellerin alleviates cognitive impairment in mice after ischemic stroke by multiple mechanisms vol.34, pp.9, 2020, https://doi.org/10.1002/ptr.6676
- Neuroinflammation in Ischemic Stroke: Focus on MicroRNA-mediated Polarization of Microglia vol.13, 2019, https://doi.org/10.3389/fnmol.2020.612439
- Sphingosine-1-Phosphate Signaling in Ischemic Stroke: From Bench to Bedside and Beyond vol.15, 2019, https://doi.org/10.3389/fncel.2021.781098
- Microglial/Macrophage polarization and function in brain injury and repair after stroke vol.27, pp.5, 2019, https://doi.org/10.1111/cns.13620
- Tanshinone IIA: A phytochemical as a promising drug candidate for neurodegenerative diseases vol.169, 2021, https://doi.org/10.1016/j.phrs.2021.105661
- Neuroprotective Effects of Curcumin in Cerebral Ischemia: Cellular and Molecular Mechanisms vol.12, pp.14, 2019, https://doi.org/10.1021/acschemneuro.1c00153
- Critical Roles of Lysophospholipid Receptors in Activation of Neuroglia and Their Neuroinflammatory Responses vol.22, pp.15, 2021, https://doi.org/10.3390/ijms22157864
- Fatty Acid Synthesis in Glial Cells of the CNS vol.22, pp.15, 2021, https://doi.org/10.3390/ijms22158159
- Moringa oleifera: A Tree of Life as a Promising Medicinal Plant for Neurodegenerative Diseases vol.69, pp.48, 2021, https://doi.org/10.1021/acs.jafc.1c04581