DOI QR코드

DOI QR Code

Etoposide Induces Mitochondrial Dysfunction and Cellular Senescence in Primary Cultured Rat Astrocytes

  • Bang, Minji (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Kim, Do Gyeong (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Gonzales, Edson Luck (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Kwon, Kyoung Ja (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Shin, Chan Young (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University)
  • Received : 2019.09.16
  • Accepted : 2019.09.25
  • Published : 2019.11.01

Abstract

Brain aging is an inevitable process characterized by structural and functional changes and is a major risk factor for neurodegenerative diseases. Most brain aging studies are focused on neurons and less on astrocytes which are the most abundant cells in the brain known to be in charge of various functions including the maintenance of brain physical formation, ion homeostasis, and secretion of various extracellular matrix proteins. Altered mitochondrial dynamics, defective mitophagy or mitochondrial damages are causative factors of mitochondrial dysfunction, which is linked to age-related disorders. Etoposide is an anti-cancer reagent which can induce DNA stress and cellular senescence of cancer cell lines. In this study, we investigated whether etoposide induces senescence and functional alterations in cultured rat astrocytes. Senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity was used as a cellular senescence marker. The results indicated that etoposide-treated astrocytes showed cellular senescence phenotypes including increased SA-${\beta}$-gal-positive cells number, increased nuclear size and increased senescence-associated secretory phenotypes (SASP) such as IL-6. We also observed a decreased expression of cell cycle markers, including PhosphoHistone H3/Histone H3 and CDK2, and dysregulation of cellular functions based on wound-healing, neuronal protection, and phagocytosis assays. Finally, mitochondrial dysfunction was noted through the determination of mitochondrial membrane potential using tetramethylrhodamine methyl ester (TMRM) and the measurement of mitochondrial oxygen consumption rate (OCR). These data suggest that etoposide can induce cellular senescence and mitochondrial dysfunction in astrocytes which may have implications in brain aging and neurodegenerative conditions.

Keywords

References

  1. Abbott, N. J. (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J. Anat. 200, 629-638. https://doi.org/10.1046/j.1469-7580.2002.00064.x
  2. Amodeo, A. A. and Skotheim, J. M. (2016) Cell-size control. Cold Spring Harb. Perspect. Biol. 8, a019083.
  3. Bang, M., Ryu, O., Kim, D. G., Mabunga, D. F., Cho, K. S., Kim, Y., Han, S. H., Kwon, K. J. and Shin, C. Y. (2018) Tenovin-1 induces senescence and decreases wound-healing activity in cultured rat primary astrocytes. Biomol. Ther. (Seoul) 27, 283-289. https://doi.org/10.4062/biomolther.2018.107
  4. Bhat, R., Crowe, E. P., Bitto, A., Moh, M., Katsetos, C. D., Garcia, F. U., Johnson, F. B., Trojanowski, J. Q., Sell, C. and Torres, C. (2012) Astrocyte senescence as a component of Alzheimer’s disease. PLoS ONE 7, e45069. https://doi.org/10.1371/journal.pone.0045069
  5. Bialas, A. R. and Stevens, B. (2013) TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat. Neurosci. 16, 1773-1782. https://doi.org/10.1038/nn.3560
  6. Boisvert, M. M., Erikson, G. A., Shokhirev, M. N. and Allen, N. J. (2018) The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep. 22, 269-285. https://doi.org/10.1016/j.celrep.2017.12.039
  7. Burda, J. E., Bernstein, A. M. and Sofroniew, M. V. (2016) Astrocyte roles in traumatic brain injury. Exp. Neurol. 275 Pt 3, 305-315.
  8. Campbell, I. L., Abraham, C. R., Masliah, E., Kemper, P., Inglis, J. D., Oldstone, M. B. and Mucke, L. (1993) Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc. Natl. Acad. Sci. U.S.A. 90, 10061-10065.
  9. Campisi, J., Andersen, J. K., Kapahi, P. and Melov, S. (2011) Cellular senescence: a link between cancer and age-related degenerative disease? Semin. Cancer Biol. 21, 354-359. https://doi.org/10.1016/j.semcancer.2011.09.001
  10. Campuzano, O., Castillo-Ruiz, M. M., Acarin, L., Castellano, B. and Gonzalez, B. (2009) Increased levels of proinflammatory cytokines in the aged rat brain attenuate injury-induced cytokine response after excitotoxic damage. J. Neurosci. Res. 87, 2484-2497. https://doi.org/10.1002/jnr.22074
  11. Capell, B. C., Drake, A. M., Zhu, J., Shah, P. P., Dou, Z., Dorsey, J., Simola, D. F., Donahue, G., Sammons, M., Rai, T. S., Natale, C., Ridky, T. W., Adams, P. D. and Berger, S. L. (2016) MLL1 is essential for the senescence-associated secretory phenotype. Genes Dev. 30, 321-336. https://doi.org/10.1101/gad.271882.115
  12. Chang, H. N., Pang, J. H., Chen, C. P., Ko, P. C., Lin, M. S., Tsai, W. C. and Yang, Y. M. (2012) The effect of aging on migration, proliferation, and collagen expression of tenocytes in response to ciprofloxacin. J. Orthop. Res. 30, 764-768. https://doi.org/10.1002/jor.21576
  13. Chung, W. S., Clarke, L. E., Wang, G. X., Stafford, B. K., Sher, A., Chakraborty, C., Joung, J., Foo, L. C., Thompson, A., Chen, C., Smith, S. J. and Barres, B. A. (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394-400. https://doi.org/10.1038/nature12776
  14. Chung, W. S., Welsh, C. A., Barres, B. A. and Stevens, B. (2015) Do glia drive synaptic and cognitive impairment in disease? Nat. Neurosci. 18, 1539-1545. https://doi.org/10.1038/nn.4142
  15. Clarke, L. E., Liddelow, S. A., Chakraborty, C., Munch, A. E., Heiman, M. and Barres, B. A. (2018) Normal aging induces A1-like astrocyte reactivity. Proc. Natl. Acad. Sci. U.S.A. 115, E1896-E1905.
  16. Collins-Hooper, H., Woolley, T. E., Dyson, L., Patel, A., Potter, P., Baker, R. E., Gaffney, E. A., Maini, P. K., Dash, P. R. and Patel, K. (2012) Age-related changes in speed and mechanism of adult skeletal muscle stem cell migration. Stem Cells 30, 1182-1195. https://doi.org/10.1002/stem.1088
  17. Dai, W., Zhou, J., Jin, B. and Pan, J. (2016) Class III-specific HDAC inhibitor Tenovin-6 induces apoptosis, suppresses migration and eliminates cancer stem cells in uveal melanoma. Sci. Rep. 6, 22622. https://doi.org/10.1038/srep22622
  18. De Cecco, M., Jeyapalan, J., Zhao, X., Tamamori-Adachi, M. and Sedivy, J. M. (2011) Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay. Aging (Albany N.Y.) 3, 955-967. https://doi.org/10.18632/aging.100372
  19. Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., Pereira-Smith, O., Peacocke, M. and Campisi, J. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U.S.A. 92, 9363-9367. https://doi.org/10.1073/pnas.92.20.9363
  20. Dossi, E., Vasile, F. and Rouach, N. (2018) Human astrocytes in the diseased brain. Brain Res. Bull. 136, 139-156. https://doi.org/10.1016/j.brainresbull.2017.02.001
  21. Enokido, Y., Yoshitake, A., Ito, H. and Okazawa, H. (2008) Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain. Biochem. Biophys. Res. Commun. 376, 128-133. https://doi.org/10.1016/j.bbrc.2008.08.108
  22. Fiacco, T. A., Agulhon, C. and McCarthy, K. D. (2009) Sorting out astrocyte physiology from pharmacology. Annu. Rev. Pharmacol. Toxicol. 49, 151-174. https://doi.org/10.1146/annurev.pharmtox.011008.145602
  23. Godbout, J. P. and Johnson, R. W. (2004) Interleukin-6 in the aging brain. J. Neuroimmunol. 147, 141-144. https://doi.org/10.1016/j.jneuroim.2003.10.031
  24. Grolleau-Julius, A., Harning, E. K., Abernathy, L. M. and Yung, R. L. (2008) Impaired dendritic cell function in aging leads to defective antitumor immunity. Cancer Res. 68, 6341-6349. https://doi.org/10.1158/0008-5472.CAN-07-5769
  25. Hayflick, L. and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585-621. https://doi.org/10.1016/0014-4827(61)90192-6
  26. Hou, J., Cui, C., Kim, S., Sung, C. and Choi, C. (2018) Ginsenoside F1 suppresses astrocytic senescence-associated secretory phenotype. Chem. Biol. Interact. 283, 75-83. https://doi.org/10.1016/j.cbi.2018.02.002
  27. Hu, W., Huang, X. S., Wu, J. F., Yang, L., Zheng, Y. T., Shen, Y. M., Li, Z. Y. and Li, X. (2018) Discovery of novel topoisomerase II inhibitors by medicinal chemistry approaches. J. Med. Chem. 61, 8947-8980. https://doi.org/10.1021/acs.jmedchem.7b01202
  28. Hudgins, A. D., Tazearslan, C., Tare, A., Zhu, Y., Huffman, D. and Suh, Y. (2018) Age- and tissue-specific expression of senescence biomarkers in mice. Front. Genet. 9, 59. https://doi.org/10.3389/fgene.2018.00059
  29. Jo, S., Yarishkin, O., Hwang, Y. J., Chun, Y. E., Park, M., Woo, D. H., Bae, J. Y., Kim, T., Lee, J., Chun, H., Park, H. J., Lee, D. Y., Hong, J., Kim, H. Y., Oh, S. J., Park, S. J., Lee, H., Yoon, B. E., Kim, Y., Jeong, Y., Shim, I., Bae, Y. C., Cho, J., Kowall, N. W., Ryu, H., Hwang, E., Kim, D. and Lee, C. J. (2014) GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. Nat. Med. 20, 886-896. https://doi.org/10.1038/nm.3639
  30. Kalman, J., Juhasz, A., Laird, G., Dickens, P., Jardanhazy, T., Rimanoczy, A., Boncz, I., Parry-Jones, W. L. and Janka, Z. (1997) Serum interleukin-6 levels correlate with the severity of dementia in Down syndrome and in Alzheimer's disease. Acta Neurol. Scand. 96, 236-240. https://doi.org/10.1111/j.1600-0404.1997.tb00275.x
  31. Kim, J. N., Kim, M. K., Cho, K. S., Choi, C. S., Park, S. H., Yang, S. I., Joo, S. H., Park, J. H., Bahn, G., Shin, C. Y., Lee, H. J., Han, S. H. and Kwon, K. J. (2013) Valproic acid regulates alpha-synuclein expression through JNK pathway in rat primary astrocytes. Biomol. Ther. (Seoul) 21, 222-228. https://doi.org/10.4062/biomolther.2013.006
  32. Kumar, M. J. and Andersen, J. K. (2004) Perspectives on MAO-B in aging and neurological disease: where do we go from here? Mol. Neurobiol. 30, 77-89. https://doi.org/10.1385/MN:30:1:077
  33. Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., Bennett, M. L., Munch, A. E., Chung, W. S., Peterson, T. C., Wilton, D. K., Frouin, A., Napier, B. A., Panicker, N., Kumar, M., Buckwalter, M. S., Rowitch, D. H., Dawson, V. L., Dawson, T. M., Stevens, B. and Barres, B. A. (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481-487. https://doi.org/10.1038/nature21029
  34. Mallajosyula, J. K., Chinta, S. J., Rajagopalan, S., Nicholls, D. G. and Andersen, J. K. (2009) Metabolic control analysis in a cellular model of elevated MAO-B: relevance to Parkinson's disease. Neurotox. Res. 16, 186-193. https://doi.org/10.1007/s12640-009-9032-2
  35. McHugh, D. and Gil, J. (2018) Senescence and aging: Causes, consequences, and therapeutic avenues. J. Cell Biol. 217, 65-77. https://doi.org/10.1083/jcb.201708092
  36. Meyer, P., Maity, P., Burkovski, A., Schwab, J., Mussel, C., Singh, K., Ferreira, F. F., Krug, L., Maier, H. J., Wlaschek, M., Wirth, T., Kestler, H. A. and Scharffetter-Kochanek, K. (2017) A model of the onset of the senescence associated secretory phenotype after DNA damage induced senescence. PLoS Comput. Biol. 13, e1005741. https://doi.org/10.1371/journal.pcbi.1005741
  37. Nagatsu, T. and Sawada, M. (2006) Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson's disease: possible implications of glial cells. J. Neural Transm. Suppl. (71), 53-65.
  38. Nasrin Ghassemi, B. and Shokrzadeh, M. D. (2018) Protective effect of amifostine against etoposide-induced genotoxicity evaluated by the comet assays. SOJ Pharm. Pharm. Sci. 5, 1-5.
  39. Ortiz-Montero, P., Londono-Vallejo, A. and Vernot, J. P. (2017) Senescence- associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun. Signal. 15, 17. https://doi.org/10.1186/s12964-017-0172-3
  40. Pommier, Y., Leo, E., Zhang, H. and Marchand, C. (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 17, 421-433. https://doi.org/10.1016/j.chembiol.2010.04.012
  41. Qiu, Z., Sweeney, D. D., Netzeband, J. G. and Gruol, D. L. (1998) Chronic interleukin-6 alters NMDA receptor-mediated membrane responses and enhances neurotoxicity in developing CNS neurons. J. Neurosci. 18, 10445-10456. https://doi.org/10.1523/JNEUROSCI.18-24-10445.1998
  42. Salminen, A., Ojala, J., Kaarniranta, K., Haapasalo, A., Hiltunen, M. and Soininen, H. (2011) Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur. J. Neurosci. 34, 3-11. https://doi.org/10.1111/j.1460-9568.2011.07738.x
  43. Saura, J., Kettler, R., Da Prada, M. and Richards, J. G. (1992) Quantitative enzyme radioautography with 3H-Ro 41-1049 and 3H-Ro 19-6327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J. Neurosci. 12, 1977-1999. https://doi.org/10.1523/JNEUROSCI.12-05-01977.1992
  44. Saura, J., Luque, J. M., Cesura, A. M., Da Prada, M., Chan-Palay, V., Huber, G., Loffler, J. and Richards, J. G. (1994) Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience 62, 15-30. https://doi.org/10.1016/0306-4522(94)90311-5
  45. Srivastava, S. (2017) The mitochondrial basis of aging and age-related disorders. Genes (Basel) 8, E398. https://doi.org/10.3390/genes8120398
  46. te Poele, R. H., Okorokov, A. L., Jardine, L., Cummings, J. and Joel, S. P. (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 62, 1876-1883.
  47. Vallieres, L., Campbell, I. L., Gage, F. H. and Sawchenko, P. E. (2002) Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J. Neurosci. 22, 486-492. https://doi.org/10.1523/JNEUROSCI.22-02-00486.2002
  48. Voloboueva, L. A., Suh, S. W., Swanson, R. A. and Giffard, R. G. (2007) Inhibition of mitochondrial function in astrocytes: implications for neuroprotection. J. Neurochem. 102, 1383-1394. https://doi.org/10.1111/j.1471-4159.2007.04634.x
  49. Woodroofe, M. N., Sarna, G. S., Wadhwa, M., Hayes, G. M., Loughlin, A. J., Tinker, A. and Cuzner, M. L. (1991) Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J. Neuroimmunol. 33, 227-236. https://doi.org/10.1016/0165-5728(91)90110-S
  50. Yoon, K. B., Park, K. R., Kim, S. Y. and Han, S. Y. (2016) Induction of nuclear enlargement and senescence by sirtuin inhibitors in glioblastoma cells. Immune Netw. 16, 183-188. https://doi.org/10.4110/in.2016.16.3.183

Cited by

  1. Unraveling Targetable Systemic and Cell-Type-Specific Molecular Phenotypes of Alzheimer’s and Parkinson’s Brains With Digital Cytometry vol.14, 2019, https://doi.org/10.3389/fnins.2020.607215
  2. Astrocyte Senescence and Alzheimer’s Disease: A Review vol.12, 2019, https://doi.org/10.3389/fnagi.2020.00148
  3. Cellular Senescence in Brain Aging vol.13, 2019, https://doi.org/10.3389/fnagi.2021.646924
  4. Late Passage Cultivation Induces Aged Astrocyte Phenotypes in Rat Primary Cultured Cells vol.29, pp.2, 2019, https://doi.org/10.4062/biomolther.2020.175
  5. An organelle-directed chemical ligation approach enables dual-color detection of mitophagy vol.17, pp.11, 2021, https://doi.org/10.1080/15548627.2021.1875597