References
- Ahn, K. H., Nishiyama, A., Mierke, D. F. and Kendall, D. A. (2010) Hydrophobic residues in helix 8 of cannabinoid receptor 1 are critical for structural and functional properties. Biochemistry 49, 502-511. https://doi.org/10.1021/bi901619r
- Beaulieu, J. M. and Gainetdinov, R. R. (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 63, 182-217. https://doi.org/10.1124/pr.110.002642
- Edward Zhou, X., Melcher, K. and Eric Xu, H. (2019) Structural biology of G protein-coupled receptor signaling complexes. Protein Sci. 28, 487-501.
- Faussner, A., Bauer, A., Kalatskaya, I., Schussler, S., Seidl, C., Proud, D. and Jochum, M. (2005) The role of helix 8 and of the cytosolic C-termini in the internalization and signal transduction of B(1) and B(2) bradykinin receptors. FEBS J. 272, 129-140. https://doi.org/10.1111/j.1432-1033.2004.04390.x
- Feierler, J., Wirth, M., Welte, B., Schussler, S., Jochum, M. and Faussner, A. (2011) Helix 8 plays a crucial role in bradykinin B(2) receptor trafficking and signaling. J. Biol. Chem. 286, 43282-43293. https://doi.org/10.1074/jbc.M111.256909
- Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. and Schioth, H. B. (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256-1272. https://doi.org/10.1124/mol.63.6.1256
- Hilger, D., Masureel, M. and Kobilka, B. K. (2018) Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25, 4-12. https://doi.org/10.1038/s41594-017-0011-7
- Isberg, V., de Graaf, C., Bortolato, A., Cherezov, V., Katritch, V., Marshall, F. H., Mordalski, S., Pin, J. P., Stevens, R. C., Vriend, G. and Gloriam, D. E. (2015) Generic GPCR residue numbers - aligning topology maps while minding the gaps. Trends Pharmacol. Sci. 36, 22-31. https://doi.org/10.1016/j.tips.2014.11.001
- Kawasaki, T., Saka, T., Mine, S., Mizohata, E., Inoue, T., Matsumura, H. and Sato, T. (2015) The N-terminal acidic residue of the cytosolic helix 8 of an odorant receptor is responsible for different response dynamics via G-protein. FEBS Lett. 589, 1136-1142. https://doi.org/10.1016/j.febslet.2015.03.025
- Kaye, R. G., Saldanha, J. W., Lu, Z. L. and Hulme, E. C. (2011) Helix 8 of the M1 muscarinic acetylcholine receptor: scanning mutagenesis delineates a G protein recognition site. Mol. Pharmacol. 79, 701-709. https://doi.org/10.1124/mol.110.070177
- Kirchberg, K., Kim, T. Y., Moller, M., Skegro, D., Dasara Raju, G., Granzin, J., Buldt, G., Schlesinger, R. and Alexiev, U. (2011) Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process. Proc. Natl. Acad. Sci. U.S.A. 108, 18690-18695.
- Kleinau, G., Jaeschke, H., Worth, C. L., Mueller, S., Gonzalez, J., Paschke, R. and Krause, G. (2010) Principles and determinants of G-protein coupling by the rhodopsin-like thyrotropin receptor. PLoS ONE 5, e9745. https://doi.org/10.1371/journal.pone.0009745
- Kuramasu, A., Sukegawa, J., Sato, T., Sakurai, E., Watanabe, T., Yanagisawa, T. and Yanai, K. (2011) The hydrophobic amino acids in putative helix 8 in carboxy-terminus of histamine H(3) receptor are involved in receptor-G-protein coupling. Cell. Signal. 23, 1843-1849. https://doi.org/10.1016/j.cellsig.2011.06.021
- Lan, H., Liu, Y., Bell, M. I., Gurevich, V. V. and Neve, K. A. (2009) A dopamine D2 receptor mutant capable of G protein-mediated signaling but deficient in arrestin binding. Mol. Pharmacol. 75, 113-123. https://doi.org/10.1124/mol.108.050534
- Liggett, S. B., Caron, M. G., Lefkowitz, R. J. and Hnatowich, M. (1991) Coupling of a mutated form of the human beta 2-adrenergic receptor to Gi and Gs. Requirement for multiple cytoplasmic domains in the coupling process. J. Biol. Chem. 266, 4816-4821. https://doi.org/10.1016/S0021-9258(19)67722-7
- Macey, T. A., Gurevich, V. V. and Neve, K. A. (2004) Preferential interaction between the dopamine D2 receptor and Arrestin2 in neostriatal neurons. Mol. Pharmacol. 66, 1635-1642. https://doi.org/10.1124/mol.104.001495
- Markx, D., Schuhholz, J., Abadier, M., Beier, S., Lang, M. and Moepps, B. (2019) Arginine 313 of the putative 8th helix mediates Galphaq/ 14 coupling of human CC chemokine receptors CCR2a and CCR2b. Cell. Signal. 53, 170-183. https://doi.org/10.1016/j.cellsig.2018.10.007
- Min, C., Zheng, M., Zhang, X., Caron, M. G. and Kim, K. M. (2013) Novel roles for beta-arrestins in the regulation of pharmacological sequestration to predict agonist-induced desensitization of dopamine D3 receptors. Br. J. Pharmacol. 170, 1112-1129. https://doi.org/10.1111/bph.12357
- Missale, C., Nash, S. R., Robinson, S. W., Jaber, M. and Caron, M. G. (1998) Dopamine receptors: from structure to function. Physiol. Rev. 78, 189-225. https://doi.org/10.1152/physrev.1998.78.1.189
- Moritz, A. E., Free, R. B. and Sibley, D. R. (2018) Advances and challenges in the search for D2 and D3 dopamine receptor-selective compounds. Cell. Signal. 41, 75-81. https://doi.org/10.1016/j.cellsig.2017.07.003
- Namkung, Y., Dipace, C., Javitch, J. A. and Sibley, D. R. (2009) G protein-coupled receptor kinase-mediated phosphorylation regulates post-endocytic trafficking of the D2 dopamine receptor. J. Biol. Chem. 284, 15038-15051. https://doi.org/10.1074/jbc.M900388200
- Okuno, T., Ago, H., Terawaki, K., Miyano, M., Shimizu, T. and Yokomizo, T. (2003) Helix 8 of the leukotriene B4 receptor is required for the conformational change to the low affinity state after G-protein activation. J. Biol. Chem. 278, 41500-41509. https://doi.org/10.1074/jbc.M307335200
- Pandy-Szekeres, G., Munk, C., Tsonkov, T. M., Mordalski, S., Harpsoe, K., Hauser, A. S., Bojarski, A. J. and Gloriam, D. E. (2018) GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res. 46, D440-D446. https://doi.org/10.1093/nar/gkx1109
- Rankovic, Z., Brust, T. F. and Bohn, L. M. (2016) Biased agonism: an emerging paradigm in GPCR drug discovery. Bioorg. Med. Chem. Lett. 26, 241-250. https://doi.org/10.1016/j.bmcl.2015.12.024
- Rasmussen, S. G., DeVree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., Thian, F. S., Chae, P. S., Pardon, E., Calinski, D., Mathiesen, J. M., Shah, S. T., Lyons, J. A., Caffrey, M., Gellman, S. H., Steyaert, J., Skiniotis, G., Weis, W. I., Sunahara, R. K. and Kobilka, B. K. (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477, 549-555. https://doi.org/10.1038/nature10361
- Santos, R., Ursu, O., Gaulton, A., Bento, A. P., Donadi, R. S., Bologa, C. G., Karlsson, A., Al-Lazikani, B., Hersey, A., Oprea, T. I. and Overington, J. P. (2017) A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19-34. https://doi.org/10.1038/nrd.2016.230
- Schonegge, A. M., Gallion, J., Picard, L. P., Wilkins, A. D., Le Gouill, C., Audet, M., Stallaert, W., Lohse, M. J., Kimmel, M., Lichtarge, O. and Bouvier, M. (2017) Evolutionary action and structural basis of the allosteric switch controlling beta2AR functional selectivity. Nat. Commun. 8, 2169. https://doi.org/10.1038/s41467-017-02257-x
- Smith, J. S., Lefkowitz, R. J. and Rajagopal, S. (2018) Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243-260. https://doi.org/10.1038/nrd.2017.229
- Sounier, R., Mas, C., Steyaert, J., Laeremans, T., Manglik, A., Huang, W., Kobilka, B. K., Demene, H. and Granier, S. (2015) Propagation of conformational changes during mu-opioid receptor activation. Nature 524, 375-378. https://doi.org/10.1038/nature14680
- Weis, W. I. and Kobilka, B. K. (2018) The molecular basis of g proteincoupled receptor activation. Annu. Rev. Biochem. 87, 897-919. https://doi.org/10.1146/annurev-biochem-060614-033910
- Westrich, L. and Kuzhikandathil, E. V. (2007) The tolerance property of human D3 dopamine receptor is determined by specific amino acid residues in the second cytoplasmic loop. Biochim. Biophys. Acta 1773, 1747-1758. https://doi.org/10.1016/j.bbamcr.2007.06.007
- Zhang, X., Wang, F., Chen, X., Chen, Y. and Ma, L. (2008) Post-endocytic fates of delta-opioid receptor are regulated by GRK2-mediated receptor phosphorylation and distinct beta-arrestin isoforms. J. Neurochem. 106, 781-792. https://doi.org/10.1111/j.1471-4159.2008.05431.x
- Zhou, X. E., He, Y., de Waal, P. W., Gao, X., Kang, Y., Van Eps, N., Yin, Y., Pal, K., Goswami, D., White, T. A., Barty, A., Latorraca, N. R., Chapman, H. N., Hubbell, W. L., Dror, R. O., Stevens, R. C., Cherezov, V., Gurevich, V. V., Griffin, P. R., Ernst, O. P., Melcher, K. and Xu, H. E. (2017) Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170, 457-469.e13. https://doi.org/10.1016/j.cell.2017.07.002
- Zhu, S., Zhang, M., Davis, J. E., Wu, W. H., Surrao, K., Wang, H. and Wu, G. (2015) A single mutation in helix 8 enhances the angiotensin II type 1a receptor transport and signaling. Cell. Signal. 27, 2371-2379. https://doi.org/10.1016/j.cellsig.2015.08.020
Cited by
- PAR4 activation involves extracellular loop 3 and transmembrane residue Thr153 vol.136, pp.19, 2020, https://doi.org/10.1182/blood.2019004634
- Receptor-Arrestin Interactions: The GPCR Perspective vol.11, pp.2, 2021, https://doi.org/10.3390/biom11020218