DOI QR코드

DOI QR Code

Development of a micro-scale Y-Zr-O oxide-dispersion-strengthened steel fabricated via vacuum induction melting and electro-slag remelting

  • Qiu, Guoxing (State Key Laboratory of Rolling and Automation, Northeastern University) ;
  • Zhan, Dongping (School of Metallurgy, Northeastern University) ;
  • Li, Changsheng (State Key Laboratory of Rolling and Automation, Northeastern University) ;
  • Qi, Min (State Key Laboratory of Rolling and Automation, Northeastern University) ;
  • Jiang, Zhouhua (School of Metallurgy, Northeastern University) ;
  • Zhang, Huishu (School of Metallurgy Engineering, Liaoning Institute of Science and Technology)
  • Received : 2019.03.04
  • Accepted : 2019.05.01
  • Published : 2019.09.25

Abstract

In this paper, the CLAM steel strengthened by micro-scale Y-Zr-O was prepared by vacuum induction melting followed by electroslag remelting (VIM-ESR). Yttrium (Y) and zirconium (Zr) were easy to aggregates into massive yttrium-zirconium-rich inclusions in the steel melted by vacuum induction melting (VIM), which would interrupt the continuity of the matrix and reduce the mechanical properties of steel. Micron-sized Y-Zr-O inclusions would be produced with the removal of original blocky Y-Zr-rich inclusions and the submicron-sized inclusions smaller than $0.2{\mu}m$ could be retained in the steel. The small grain size and the better refinement and distribution uniformity of Y-Zr-O inclusions after remelting would be responsible for the better yield strength and toughness. For VIM-ESR alloy, the ultimate tensile strength is 749 MPa and the yield strength is 642 MPa at room temperature, meanwhile they are 391 MPa and 367 MPa at $600^{\circ}C$, respectively. Meanwhile, the ductile-brittle transition temperature (DBTT) reduced from $-43^{\circ}C$ (VIM) to $-76^{\circ}C$ (VIM-ESR).

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Central Universities

References

  1. Y. Xin, J. Qiu, X. Ju, T.D. Ma, L.P. Guo, Q.Y. Huang, Y.C. Wu, Microstructural evolution of the China Low Activation Martensitic (CLAM) steel irradiated by H and He ion beams, Nucl. Instrum. Methods Phys. Res. B 267 (18) (2009) 3166-3169. https://doi.org/10.1016/j.nimb.2009.06.073
  2. L. Toualbi, C. Cayron, P. Olier, J. Malaplate, M. Praud, M.-H. Mathon, D. Bossu, E. Rouesne, A. Montani, R. Loge, Y. de Carlan, Assessment of a new fabrication route for Fe-9Cr-1W ODS cladding tubes, J. Nucl. Mater. 428 (1-3) (2012) 47-53. https://doi.org/10.1016/j.jnucmat.2011.12.013
  3. Y.F. Li, H. Abe, T. Nagasaka, T. Muroga, M. Kondo, Corrosion behavior of 9Cr-ODS steel in stagnant liquid lithium and leadelithium at 873 K, J. Nucl. Mater. 443 (1-3) (2013) 200-206. https://doi.org/10.1016/j.jnucmat.2013.07.026
  4. R. Kasada, N. Toda, K. Yutani, H.S. Cho, H. Kishimoto, A. Kimura, Pre- and postdeformation microstructures of oxide dispersion strengthened ferritic steels, J. Nucl. Mater. 367-370 (2007) 222-228. https://doi.org/10.1016/j.jnucmat.2007.03.141
  5. J.H. Ahn, B.H. Park, J. Jang, Effect of ball-milling method on the formation of ODS Fe-14Cr-2Al-1Si-0.3Ta-$1Y_2O_3$ powders, Solid State Phenom. 135 (2008) 65-68. https://doi.org/10.4028/www.scientific.net/SSP.135.65
  6. P. Dou, A. Kimura, R. Kasada, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisaw, F. Abe, TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition, J. Nucl. Mater. 444 (1-3) (2014) 441-453. https://doi.org/10.1016/j.jnucmat.2013.10.028
  7. H.J. Xu, Zh Lu, D.M. Wang, Ch M. Liu, Microstructure refinement and strengthening mechanisms of a 9Cr oxide dispersion strengthened steel by zirconium addition, Nucl. Eng. Technol. 49 (1) (2017) 178-188. https://doi.org/10.1016/j.net.2017.01.002
  8. J. Isselin, R. Kasada, A. Kimura, Corrosion behaviour of 16% Cr-4%Al and 16%Cr ODS ferritic steels under different metallurgical conditions in a supercritical water environment, Corros. Sci. 52 (2010) 3266-3270. https://doi.org/10.1016/j.corsci.2010.05.043
  9. A. Yabuuchi, M. Maekawa, A. Kawasuso, Influence of oversized elements (Hf, Zr, Ti and Nb) on the thermal stability of vacancies in type 316L stainless steels, J. Nucl. Mater. 430 (2012) 190-193. https://doi.org/10.1016/j.jnucmat.2012.07.005
  10. Z.M. Shi, F. Sh Han, The microstructure and mechanical properties of microscale $Y_2O_3$ strengthened 9Cr steel fabricated by vacuum casting, Mater. Des. 66 (2015) 304-308. https://doi.org/10.1016/j.matdes.2014.10.075
  11. M.A. Moghadasi, M. Nili-Ahmadabadi, F. Forghani, H.S. Kim, Development of an oxide-dispersion-strengthened steel by introducing oxygen carrier compound into the melt aided by a general thermodynamic model, Sci. Rep. 6 (2016) 1-10. https://doi.org/10.1038/s41598-016-0001-8
  12. D.P. Zhan, G.X. Qiu, Zh H. Jiang, H. Sh Zhang, Effect of Yttrium and Titanium on Inclusions and the Mechanical Properties of 9Cr RAFM Steel Fabricated by Vacuum Melting, Steel Research International, 2017.
  13. Sh J. Liu, Q.Y. Huang, Ch J. Li, B. Huang, Influence of non-metal inclusions on mechanical properties of CLAM steel, Fusion Eng. Des. 84 (7) (2009) 1214-1218. https://doi.org/10.1016/j.fusengdes.2008.12.037
  14. Y.F. Li, Q.Y. Huang, Y.C. Wu, Y.N. Zheng, Y. Zuo, Sh Y. Zhu, Effects of addition of yttrium on properties and microstructure for China Low Activation Martensitic (CLAM) steel[J], Fusion Eng. Des. 82 (15-24) (2007) 2683-2688. https://doi.org/10.1016/j.fusengdes.2007.07.048
  15. G.X. Qiu, D.P. Zhan, Ch Sh Li, M. Qi, Zh H. Jiang, H. Sh Zhang, Effects of yttrium on microstructure and properties of reduced activation ferritic-martensitic steel, Mater. Sci. Technol. 34 (16) (2018) 2018-2029. https://doi.org/10.1080/02670836.2018.1509462
  16. W. Yan, P. HU, W. Wang, L.J. Zhao, Y.Y. Shan, K. Yang, Effect of yttrium on mechanical properties of 9Cr-2WVTa low active martensite steel, Chin. J. Nucl. Sci. Eng. 29 (1) (2009) 50-55.
  17. J.H. Shim, Y.J. Suh, Y.W. Cho, J.D. Shim, J.S. Byun, D.N. Lee, Ferrite nucleation potency of non-metallic inclusions in medium carbon steels, Acta Mater. 49 (12) (2001) 2115-2122. https://doi.org/10.1016/S1359-6454(01)00134-3
  18. A. Karasev, H. Suito, Analysis of size distributions of primary oxide inclusions in Fe-10 mass Pct Ni- M,(M=Si, Ti, Al, Zr, and Ce)alloy, Metall. Mater. Trans. B 30 (2) (1999) 259-270. https://doi.org/10.1007/s11663-999-0055-0
  19. S. Morioka, H. Suito, Effect of oxide particles on ${\delta}/{\gamma}$ transformation and austenite grain growth in Fe-0.05-0.30%C-1.0%Mn-1.0%Ni alloy, ISIJ Int. 48 (3) (2008) 286-293. https://doi.org/10.2355/isijinternational.48.286
  20. G.X. Qiu, D.P. Zhan, Ch Sh Li, M. Qi, Zh H. Jiang, H. Sh Zhang, Effect of Y/Zr ratio on inclusions and mechanical properties of 9Cr-RAFM steel fabricated by vacuum melting, J. Mater. Eng. Perform. 28 (2) (2019) 1067-1076. https://doi.org/10.1007/s11665-018-3838-0
  21. Z.X. Xia, C. Zhang, H. Lan, Z.G. Yang, P.H. Wang, J.M. Chen, Z.Y. Xu, X.W. Li, S. Liu, Influence of smelting processes on precipitation behaviors and mechanical properties of low activation ferrite steels, Mater. Sci. Eng. 528 (2) (2010) 657-662. https://doi.org/10.1016/j.msea.2010.09.088
  22. M.E. Alam, S. Pal, S.A. Maloy, G.R. Odette, On delamination toughening of a 14YWT nanostructured ferritic alloy, Acta Mater. 136 (1) (2017) 61-73. https://doi.org/10.1016/j.actamat.2017.06.041
  23. H. Sakasegawa, H. Tanigawa, S. Kano, H. Abe, Material properties of the F82H melted in an electric arc furnace, Fusion Eng. Des. 98-99 (2015) 2068-2071. https://doi.org/10.1016/j.fusengdes.2015.06.103
  24. Q.M.Wan, R.S. Wang, G.G. Shu, L.K. Weng, Analysis method of Charpy V-notch impact data before and after electron beam welding reconstitution, Nucl. Eng. Des. 241 (2) (2011) 459-463. https://doi.org/10.1016/j.nucengdes.2010.11.005
  25. J.G. Chen, Y. Ch Liu, Y.T. Xiao, Y.H. Liu, Ch X. Liu, H.J. Li, Improvement of high-temperature mechanical properties of low-carbon RAFM steel by MX precipitates, Acta Metall. Sin. 31 (7) (2018) 706-712. https://doi.org/10.1007/s40195-018-0703-y
  26. Y.B. Chun, S.H. Kang, D.W. Lee, S. Cho, Y.H. Jeong, A. Zywczak, C.K. Rhee, Development of Zr-containing advanced reduced-activation alloy (ARAA) as structural material for fusion reactors, Fusion Eng. Des. 109-111 (2016) 629-633. https://doi.org/10.1016/j.fusengdes.2016.02.032
  27. L. Schaefer, Tensile and impact behavior of the reduced-activation steels OPTIFER and F82H mod, J. Nucl. Mater. 283-287 (2000) 707-710. https://doi.org/10.1016/S0022-3115(00)00115-X
  28. H. Tanigawa, A. Sawahata, M.A. Sokolov, M. Enomoto, R.L. Klueh, A. Kohyama, Effects of inclusions on fracture toughness of reduced-activation ferritic/ martensitic F82H-IEA steels, Mater. Trans. 48 (3) (2007) 570-573. https://doi.org/10.2320/matertrans.48.570
  29. R.L. Klueh, D.J. Alexander, P.J. Maziasz, Bainitic chromiumetungsten steels with 3 pct chromium, Metall. Mater. Trans. 28 (2) (1997) 335-345. https://doi.org/10.1007/s11661-997-0136-0
  30. R.L. Klueh, D.J. Alexander, M. Rieth, The effect of tantalum on the mechanical properties of a 9Cre2We0.25Ve0.07Tae0.1C steel, J. Nucl. Mater. 273 (2) (1999) 146-154. https://doi.org/10.1016/S0022-3115(99)00035-5
  31. Y. Li, Q. Huang, Y. Wu, T. Nagasaka, T. Muroga, Mechanical properties and microstructures of China low activation martensitic steel compared with JLF-1, J. Nucl. Mater. 367-370 (2007) 117-121. https://doi.org/10.1016/j.jnucmat.2007.03.012

Cited by

  1. Evolution of Microstructures and Mechanical Properties of Zr-Containing Y-CLAM During Thermal Aging vol.33, pp.6, 2019, https://doi.org/10.1007/s40195-020-01011-5
  2. Progress of zirconium alloying in iron-based alloys and steels vol.37, pp.9, 2019, https://doi.org/10.1080/02670836.2021.1958488