DOI QR코드

DOI QR Code

Large Area Deposition of Biomimetic Polydopamine-Graphene Oxide Hybrids using Langmuir-Schaefer Technique

랭뮤어-쉐퍼 기법 이용 생체모사 폴리도파민-산화그래핀 복합체 대면적 적층 기법 연구

  • Kim, Tae-Ho (Department of Organic Materials Engineering, Chungnam National University) ;
  • Song, Seok Hyun (Neutron Science Center, Korea Atomic Energy Research Institute) ;
  • Jo, Kyung-Il (Neutron Science Center, Korea Atomic Energy Research Institute) ;
  • Koo, Jaseung (Department of Organic Materials Engineering, Chungnam National University)
  • 김태호 (충남대학교 유기재료공학과) ;
  • 송석현 (한국원자력연구원 중성자과학연구센터) ;
  • 조경일 (한국원자력연구원 중성자과학연구센터) ;
  • 구자승 (충남대학교 유기재료공학과)
  • Received : 2019.09.14
  • Accepted : 2019.09.23
  • Published : 2019.09.30

Abstract

Graphene oxide has been gathering interests as a way to exfoliate graphene. Since the oxidation group of graphene oxide can hydrogen bond with various functional groups, tremendous efforts have been actively conducted to apply various applications. However, graphene oxide alone cannot substantially possess the mechanical properties required for the practical application. Therefore, in this study, polydopamine, which is a bio-mimetic mussel protein-inspired material, was combined with graphene oxide to form a large-area composite membrane at the liquid-gas interface. In addition, the morphology of the polydopamine-graphene oxide composite thin film was also controlled to obtain a composite membrane having a nano-wrinkle structure. It can be expected to be used in the next generation seawater desalination membranes or carbon composites because it can form mechanically superior and sophisticated nanostructures.

그래핀으로 박리시키기 위한 한 가지 방법으로 산화그래핀이 많은 관심이 집중되고 있다. 산화그래핀의 산화그룹은 다양한 기능기와 수소결합을 시킬 수 있어 여러 응용분야에 이를 적용시키기 위한 연구가 활발히 진행되고 있다. 하지만 산화그래핀 자체만으로는 실질적으로 응용에 요구되어지는 기계적 물성을 만족시킬 수 없다. 따라서 본 연구에서는 홍합 단백질을 생체모사한 폴리도파민을 이용하여 산화그래핀과 결합시키고 액체-기체 계면에서 대면적의 복합체막을 형성 시켰다. 또한 폴리도파민-산화그래핀 복합체 박막의 모폴로지 구조도 제어하여 나노 링클 구조를 가지는 복합체 막을 얻었다. 기계적으로 우수하며 정교한 나노 구조를 형성할 수 있어 차세대 해수담수화 멤브레인 또는 탄소 복합재료에 이용될 수 있을 것으로 기대될 수 있다.

Keywords

References

  1. Z. Yin, J. Zhu, Q. He, X. Cao, C. Tan, H. Chen, Q. Yan and H. Zhang, Adv. Energy Mater., 4, 1300574 (2014). https://doi.org/10.1002/aenm.201300574
  2. R. Raccichini, A. Varzi, S. Passerini and B. Scrosati, Nat. Mater., 14, 271 (2015). https://doi.org/10.1038/nmat4170
  3. T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B.H. Hong, J.-H. Ahn and T.-W. Lee, Nat. Photonics, 6, 105 (2012). https://doi.org/10.1038/nphoton.2011.318
  4. D.R. Dreyer, S. Park, C.W. Bielawski and R.S. Ruoff, Chem. Soc. Rev., 39, 228 (2010). https://doi.org/10.1039/B917103G
  5. T. Lin, Y. Tang, Y. Wang, H. Bi, Z. Liu, F. Huang, X. Xie and M. Jiang, Energy Environ. Sci., 6, 1283 (2013). https://doi.org/10.1039/c3ee24324a
  6. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, and T. Li, Science, 312, 1191 (2006). https://doi.org/10.1126/science.1125925
  7. Z. Jin, T.P. McNicholas, C.-J. Shih, Q.H. Wang, G.L.C. Paulus, A.J. Hilmer, S. Shimizu, and M.S. Strano, Chem. Mater., 2314, 3362 (2011).
  8. L.J. Cote, F. Kim, and J. Huang, J. Am. Chem. Soc., 1313, 1043 (2009).
  9. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang and H. Dai, Nat. Nanotechnol., 3, 538 (2008). https://doi.org/10.1038/nnano.2008.210
  10. J.D. Mangadlao, C.M. Santos, M.J.L. Felipe, A.C.C. de Leon, D.F. Rodrigues and R.C. Advincula, Chem. Commun., 51, 2886 (2015). https://doi.org/10.1039/c4cc07836e
  11. Y. Gao, X. Chen, H. Xu, Y. Zou, R. Gu, M. Xu, A.K.-Y. Jen, and H. Chen, Carbon, 48, 4475 (2010). https://doi.org/10.1016/j.carbon.2010.08.007
  12. Q. Zheng, W.H. Ip, X. Lin, N. Yousefi, K.K. Yeung, Z. Li, and J.-K. Kim, ACS Nano, 57, 6039 (2011).
  13. J. Kim, L.J. Cote, and J. Huang, Acc. Chem. Res., 458, 1356 (2012).
  14. H. Kim, Y.R. Jang, J. Yoo, Y.-S. Seo, K.-Y. Kim, J.-S. Lee, S.-D. Park, C.-J. Kim, and J. Koo, Langmuir, 308, 2170-2177 (2014).
  15. H. Lee, K.-I. Choi, J.-H. Choi, J. Yoo, Y.-S. Seo, S. Satija, and J. Koo, ACS Appl. Nano Mater., 27, 4203 (2019).
  16. D.‐D. Han, Y.‐L. Zhang, Y. Liu, Y.‐Q. Liu, H.‐B. Jiang, B. Han, X.‐Y. Fu, H. Ding, H.‐L. Xu, and H.‐B. Sun, Adv. Func. Mater., 25, 4548 (2015). https://doi.org/10.1002/adfm.201501511
  17. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud'Homme and L.C. Brinson, Nat. Nanotechnol., 3, 327 (2008). https://doi.org/10.1038/nnano.2008.96
  18. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen and R.S. Ruoff, Nature, 442, 282 (2006). https://doi.org/10.1038/nature04969
  19. M. Fang, K.G. Wang, H.B. Lu, Y.L. Yang, and S. Nutt, J. Mater. Chem., 19, 7098 (2009). https://doi.org/10.1039/b908220d
  20. A.L. Higginbotham, J.R. Lomeda, A.B. Morgan, and J.M. Tour. ACS Appl. Mater. Interfaces, 1, 2256 (2009). https://doi.org/10.1021/am900419m
  21. D. Chen, H. Zhu, and T. Liu, ACS Appl. Mater. Interfaces, 2, 3702 (2010). https://doi.org/10.1021/am1008437
  22. T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud'Homme and L. C. Brinson, Nat. Nanotechnol., 3, 327 (2008). https://doi.org/10.1038/nnano.2008.96
  23. H. Bai, C. Li, X. Wang and G. Shi, Chem. Commun., 46, 2376 (2010). https://doi.org/10.1039/c000051e
  24. S. Park, D. A. Dikin, S. T. Nguyen and R. S. Ruoff, J. Phys. Chem. C, 113, 15801 (2009). https://doi.org/10.1021/jp907613s
  25. Y. Liu, K. Ai, and L. Lu, Chem. Rev., 114, 5057 (2014). https://doi.org/10.1021/cr400407a
  26. J. H. Ryu, P. B. Messersmith, and H. Lee, ACS Appl. Mater. Interfaces, 109, 7523 (2018)
  27. H. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science, 318, 426 (2007). https://doi.org/10.1126/science.1147241
  28. L. J. Cote, F. Kim, J. Huang, J. Am. Chem. Soc., 131, 1043–1049 (2009). https://doi.org/10.1021/ja806262m
  29. J. S. Park, S. M. Cho, W.-J. Kim, J. Park, P. J. Yoo, ACS Appl. Mater. Interfaces, 3, 360 (2011). https://doi.org/10.1021/am100977p
  30. H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano, 2, 463 (2008). https://doi.org/10.1021/nn700375n
  31. J. Azevedo, C. C. Coquelard, P. Jegou, T. Yu, J.-J. Benattar, J. Phys. Chem. C, 115, 14678 (2011). https://doi.org/10.1021/jp205020r