• Title/Summary/Keyword: Polydopamine

Search Result 25, Processing Time 0.032 seconds

Mussel-Inspired, Fast Surface Modification of Solid Substrates

  • Hong, Sang-Hyeon;Kang, Sung-Min;Lee, Hae-Shin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.201-201
    • /
    • 2011
  • Recently, mussel-inspired surface modification, called polydopamine coating has been extensively implemented to many areas, due to its material versatility and ease to use. In particular, incubation of substrates in an alkaline dopamine solution resulted in self-polymerization of dopamine and modified variety of material surfaces, including noble metals, metal oxides, ceramics, and synthetic polymers. However, the polydopamine coating has a drawback to practical use; it takes more than 12 hrs to introduce sufficient polydopamine layers to solid substrates. Here, we investigated the rate-enhanced polydopamine coating by varying reaction conditions: pH, concentration, and the addition of the oxidizing agent. As a result, the optimum condition for fast polydopamine coating was found, and solid substrates were efficiently coated with polydopamine layers in just few minutes using the condition. The polydopamine-modified surface was characterized by XPS and contact angle goniometry, and the biocompatibility of the modified surface was also proved by cell attachment test.

  • PDF

Recent progress on polydopamine surface chemistry (폴리도파민 표면화학: 발명 10 년의 이야기)

  • Eom, Soomin;Park, Hong Key;Park, Jihyo;Hong, Seonki;Lee, Haeshin
    • Journal of Adhesion and Interface
    • /
    • v.19 no.1
    • /
    • pp.19-29
    • /
    • 2018
  • Polydopamine coating is one of the most straightforward and widely used method for surface modification inspired by adhesiveness of mussel foot protein contributed by co-existence of catechol and amine. This technique has been utilized not only in surface modification but other numerous fields of study as well. For the past decade, the subject of polydopamine has been thoroughly studied since the initial polydopamine research published in 2007, including its chemical structure, coating conditions, and material characteristics. In this study, we report the current trends and progress of polydopamine coating methods, the newly developing areas of polydopamine related research such as using dopamine derivatives and polyphenolic compounds, improvement of various functionalization and application of polydopamine coating, and explain the state of current attempts to discover the chemical mechanism, structure, and properties of polydopamine.

Polydopamine Coating Behaviors on the Acrylic Acid Grafted-Nanofibers (아크릴산이 그라프트된 나노섬유에서의 폴리도파민 코팅)

  • Shin, Young Min;Kim, Woo-Jin;Park, Jong-Seok;Gwon, Hui-Jeong;Nho, Young-Chang;Lim, Youn-Mook
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.371-376
    • /
    • 2011
  • The surface property of the materials used in tissue engineering application has been essential to regulate cellular behaviors by directing their adhesion on the materials. To modulate surface property of the synthetic biodegradable materials, a variety of surface modification techniques have used to introduced surface functional groups or bioactive molecules, recently polydopamine coating method have been introduce as a facile modification method which can be coated on various materials such as polymers, metals, and ceramics regardless of their surface property. However, there are no reports about the degree of polydopamine coating on the materials with different hydrophilicity. In the present study, we prepared acrylic acid grafted nanofibrous meshes using electron-beam irradiation, and then coated meshes with polydopamine. Polydopamine successfully coated on the all meshes, both properties of acrylic acid and polydopamine were detected on the meshes. In addition, the degree of polydopamine deposition on the materials has been altered according to surface hydrophilicity, which was approximately 8-times greater than those on the non-modified materials. In conclusion, dual effect from the acrylic acid grafting and polydopamine may give a chance as a alternative tool in tissue engineering application.

Polydopamine-coated chitosan hydrogels for enzyme immobilization

  • Chang Sup Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.512-518
    • /
    • 2023
  • To address inherent weaknesses such as low mechanical strength and limited enzyme loading capacity in conventional chitosan or alginate beads, an additional step involving the exchange of anionic surfactants with hydroxide ions was employed to prepare porous chitosan hydrogel capsules for enzyme immobilization. Consequently, excellent thermal stability and long-term storage stability were confirmed. Furthermore, coating the porous chitosan hydrogel capsules with polydopamine not only improved mechanical stability but also exhibited remarkable enzyme immobilization efficiency (97.6% for M1-D0.5). Additionally, it was demonstrated that the scope of application for chitosan hydrogel beads, prepared using conventional methods, could be further expanded by introducing an additional step of polydopamine coating. The enzyme immobilization matrix developed in this study can be selectively applied to suit specific purposes and is expected to be utilized as a support for the adsorption or covalent binding of various substances.

수처리 목적의 대기압플라즈마를 이용한 유사 폴리도파민 필름 증착

  • Mun, Mu-Gyeom;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.124-124
    • /
    • 2018
  • Polydopamine은 수중 접착력, 친환경 접착제, nanoparticle absorption 등 다양한 특성으로 많이 연구되고 있는 소재이다. 본 연구에서는 dopamine을 이용하여 수중 금속을 흡착시키는 thin film을 제작하였다. 종래의 Polydopamine coating 방법으로 wet coating 이 사용되고 있다. 하지만 wet 방식의 경우 시간이 오래 걸릴 뿐만 아니라 in-line, roll to roll 방식을 적용하는 것이 어렵기 때문에 생산적이지 않다. 이에 본 연구에서는 Atmospheric Pressure Plasma(APP)를 이용 하여 Polydopamine-like film을 coating 하였다. APP의 경우 vacuum system, solution tank가 필요 없고 in-line, roll to roll 방식을 적용 할 수 있기 때문에 더 경제적이고 생산적인 공정이다. 또한 기존의 Plasma polymerization 방법은 Plasma energy가 높기 때문에 source의 분자구조가 바뀌거나 atom 단위로 분해된다. source의 분자구조가 바뀌는 "Atomic polymerization", Neiswender-Rosskamp Mechanism이 적용되면 wet 방식 coating한 film과는 다른 특성을 갖게 된다. 하지만 APP polymerization은 Plasma energy가 vacuum plasma 보다 매우 낮기 때문에 stile polymerization mechanism을 구현 하는데 적합 하다. stile polymerization mechanism은 Plasma 내부에서 polymer source를 분해 성장 시켜서 Polymer film 얻는 것이 아닌 source의 분자구조가 깨지지 않으면서 polymer growing 시키는 방법이다. dopamine source의 분자구조를 최대한 유지하려고 하는 이유는 metal absorption과 같은 특성이 dopamine chemical structure에 영향을 받기 때문이다. 많은 논문들에서 dopamine의 catechol group이 metal absorption, adhesion force에 영향을 주는 주요 인자라고 주장하고 있기 때문이다. 그래서 본 논문에서는 Dopamine source의 형태를 보존하면서 Polymerization 하는 방법으로 APP process를 사용 하여 낮은 전압에서 Polydopamine-like film을 제작 하였다. APP system 의 Plasma 방전부 에 Dopamine source를 유입하기 위하여 본 논문에서는 Piezo Spray 방식을 사용 하였다. Dopamine을 evaporator 하는 것이 어렵고 chemical composition이 유사한 monomer를 사용해서 Plasma Polymerization으로 Dopamine 분자 구조를 재현하는 것도 어렵다. 그래서 본 연구에서는 Dopamine을 water에 immerse 하고 Dopamine solution을 mist 상태로 만들어서 Plasma discharge area에 유입하였다. 이러한 방법으로 만들어진 film은 Polydopamine film은 아니지만 Polydopamine film과 유사한 Chemical composition, chemical structure, metal absorption을 갖는 것을 FT-IR, SEM, XPS을 이용 하여 확인 하였다. Dopamine source의 보존에 대하여 명확하게 확인하기 위하여 FT-IR을 측정 하였다. 전압에 따른 Benzene ring, hydroxyl group의 비율을 확인 하였다. 낮은 전압으로 coating 된 Polydopamine-like film 일수록 hydroxyl group peak($3400{\sim}3000cm^{-1}$)과 비교하여 Benzene ring peak($1600{\sim}1580cm^{-1}$ and $1510{\sim}500cm^{-1}$)이 흡수를 더 많이 하는 것을 확인 할 수 있다. 이것은 Benzene ring이 파괴되지 않고 보존되는 것을 보여준다. Dopamine에서 Benzene ring은 absorption main factor인 catechol에 있는 chemical structure이다. 즉 Benzene ring peak이 높을수록 Catechol이 잘 보존 되었다는 의미 이다. Catechol의 보존은 absorption main factor가 보존 된다는 의미 이다. 이러한 Polydopamine-like film으로 As, Cr, Mg, Cu 200ppm solution에 대한 filtration 능력을 확인 하였다. As, Cr, Cu, Mg 의 제거율이 각각 약25%, 35%, 45%, 65%인 것을 확인 하였다. 이 수치는 시중에 판매되는 제품들과 비교했을 때 300%~500% 향상된 수치 이다.

  • PDF

Electrochemical Performance of Carbon Coated LiMn2O4 Nanoparticles using a New Carbon Source

  • Park, Jin Seo;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.139-145
    • /
    • 2016
  • The electrochemical performance of carbon-coated LiMn2O4 nanoparticles was reported. The polydopamine layer was introduced as a new organic carbon source. The carbon layer was homogeneously coated onto the surface of the LiMn2O4 nanoparticles because the polymerization process from the dopamine solution (in a buffer solution, pH 8.5) easily and uniformly formed a polydopamine layer. The phase integrity of LiMn2O4 deteriorated during the carbon-coating process due to oxygen loss, although the main structure was maintained. The carbon-coated sample led to improved rate capability because of the effect of the conductive carbon layer. Moreover, the carbon coating also enhanced the cyclic performance. This indicates that the carbon layer may suppress unwanted side reactions with the electrolytes and compensate for the low electronic conductivity of the pristine LiMn2O4.

Universal, Material-independent Surface Modifications Inspired by Mussels

  • Lee, Hae-Sin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.60-60
    • /
    • 2012
  • 본 발표에서는 물 또는 용매 속에서 어떤 물질의 표면도 개질할 수 있는 표면공학기법에 대해 발표하고자 한다. 본 기술은 홍합의 접착단백질의 성분에서 착안한 polydopamine 및 catecholamine으로 정의되는 일련의 chemical compounds에 의해 수행된다. 먼저 polydopamine의 형성 원리를 설명 하고 이를 이용하여, 에너지, 물, 나노바이오 등 다양한 분야의 응용예를 소개 할 예정이다.

  • PDF