DOI QR코드

DOI QR Code

Trends of Eco-friendly Polyurethane and Fillers

친환경 폴리우레탄 및 충전제 기술동향

  • Kim, In Tae (Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University) ;
  • Joo, Soohyun (Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University) ;
  • Oh, Jeong Seok (Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University)
  • 김인태 (경상대학교 나노신소재융합공학과) ;
  • 주수현 (경상대학교 나노신소재융합공학과) ;
  • 오정석 (경상대학교 나노신소재융합공학과)
  • Received : 2019.09.24
  • Published : 2019.09.30

Abstract

Keywords

References

  1. C. Jones, D.M. Kammen, Environ. Sci. Technol., 48, 895 (2014). https://doi.org/10.1021/es4034364
  2. Y. Guo, J Tian, N. Zang, Y. Gao, L. Chen, Environ. Sci. Technol., 52, 7754 (2018). https://doi.org/10.1021/acs.est.8b00537
  3. R.C. Saxena, D.K. Adhikari, H.B. Goyal, Renewable Sustainable Energy Rev, 13, 16 (2009).
  4. A. Vilcinskas ed. Insect Biotechnology, 2 (2010).
  5. 오정석, 곽성복, 고무기술, 16, 75 (2015).
  6. KISTEP, 212, 1 (2017).
  7. 한국바이오협회, 생명공학백서, (2017).
  8. J.H. Moon, S.B. Kwak, J.Y. Lee, J.S. Oh, Elastomers Compos., 52, 249 (2017). https://doi.org/10.7473/EC.2017.52.4.249
  9. H.Y. Li, Y.Q. Tan, L. Zhang, Y.X. Zhang, Y.H. Song, Y. Ye, M.S. Xia, J. Hazard. Mater, 217, 256 (2012). https://doi.org/10.1016/j.jhazmat.2012.03.028
  10. 조윤주, 최성희, 이은열, Appl. Chem. Eng., 24, 579 (2013). https://doi.org/10.14478/ace.2013.1081
  11. 바이오화학산업동향지, Trend In White Biotech, 70 (2015).
  12. 김광인, 김상범, Korean Industrial Chemistry News, 15, 11 (2012).
  13. G. Robbenlen, R.K. Downey, and A. Ashri, Nature and Biosynthesis of Storage Protams, in Oil Crops of the World, McGraw-Hill, 165 (1989).
  14. M.N. Belgacem and A. Gandini, Monomers, Polymers and Composites from Renewable Resources, Elsevier, 40 (2008).
  15. J. Huang, L. Zhang, H. Wei, and X. Cao, J. Appl. Polym. Sci., 93, 624 (2004). https://doi.org/10.1002/app.20478
  16. Y.H. Hu, Y. Gao, D.N. Wang, C.P. Hu, S. Zu, L. Vanoverloop, and D. Randall, J. Appl. Polym. Sci., 84, 591 (2002). https://doi.org/10.1002/app.10311
  17. A. Guo, D. Demydov, W. Zhang, and Z.S. Petrovic, J. Polym. Environ., 10, 49, (2002). https://doi.org/10.1023/A:1021022123733
  18. A. Guo, W. Zhang, and Z.S. Petrovic, J. Mater. Sci., 41, 4914, (2006). https://doi.org/10.1007/s10853-006-0310-6
  19. Z.S. Petrovic, W. Zhang, and I. Javni, Biomacromolecules, 6, 713, (2005). https://doi.org/10.1021/bm049451s
  20. Y. L. Hsiao, US0229375 A1, (2006).
  21. V.B. Veronese, R.K. Menger, M.M. de C. Forte, and C.L. Petzhold, J. Appl. Polym. Sci., 120, 530 (2011). https://doi.org/10.1002/app.33185
  22. M.A. Mosiewicki, G.A. Dell'arciprete, M.I. Aranguren, and N.E. Marcovich, J .Compos. Mater., 43, 3057 (2009). https://doi.org/10.1177/0021998309345342
  23. L. Shen, J. Haufe, and M.K. Patel, Report for European Polysaccharide Network Of Excellence (EPNOE) and European Bioplastics, 243 (2009).
  24. N. Shiraishi, S. Onodera, M. Ohtani, and T. Masumoto, Mokuzai Gakkaishi, 31, 418 (1985).
  25. S. Pu and N. Shiraishi, Mokuzai Gakkaishi, 39, 446 (1993).
  26. D. Maldas and N. Shiraishi, Biomass Bioenerg., 12, 273 (1997). https://doi.org/10.1016/S0961-9534(96)00074-8
  27. M.H. Alma, M. Yoshioka, Y. Yao, and N. Shiraishi, J. Appl. Polym. Sci., 61, 675 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960725)61:4<675::AID-APP11>3.0.CO;2-X
  28. T. Yamada and H. Ono, Bioresour. Technol., 70, 61 (1999). https://doi.org/10.1016/S0960-8524(99)00008-5
  29. S.P. Mun and E.M. Hassan, J. Ind. Eng. Chem., 10, 473 (2004).
  30. Y. Yao, M. Yoshioka, and N. Shiraishi, Mokuzai Gakkaishi, 41, 659 (1995).
  31. Y. Yao, M. Yoshioka, and N. Shiraishi, J. Appl. Polym. Sci., 60, 1939 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960613)60:11<1939::AID-APP18>3.0.CO;2-W
  32. G. Cayli and S. Kusefoglu, J. Appl. Pol. Sci., 109, 2948 (2008). https://doi.org/10.1002/app.28401
  33. D.P. Pfister, Y. Xia, and R.C. Larock, Chem. Sus. Chem., 4, 703 (2011). https://doi.org/10.1002/cssc.201000378
  34. L. Hojabri, H. Kong, and S.S. Narine, Biomacromolecules, 10, 884 (2009). https://doi.org/10.1021/bm801411w
  35. L. Hojabri, X. Kong, and S.S. Narine, J. Polym. Sci. Polym. Chem., 48, 3302 (2010). https://doi.org/10.1002/pola.24114
  36. A. Cornille, R. Auvergne, O. Figovsky, B. Boutevin, and S. Caillol, European Polymer Journal, 87, 535 (2017). https://doi.org/10.1016/j.eurpolymj.2016.11.027
  37. S. Schmidt, B. S. Ritter, D. Kratzert, B. Bruchmann, and R. Mulhaupt, Macromolecules, 49, 7268 (2016). https://doi.org/10.1021/acs.macromol.6b01485
  38. B. Tamami, S. Sohn, and G. L. Wilkes, J. Appl. Polym. Sci., 92, 883 (2004). https://doi.org/10.1002/app.20049
  39. L. Ubaghs, N. Fricke, H. Keul, and H. Hocker, Macromol. Rapid Commun., 25, 517 (2004). https://doi.org/10.1002/marc.200300064
  40. M.D.A. Azambuja and A.A. Dias, Mat. Research, 9, 287 (2016). https://doi.org/10.1590/S1516-14392006000300008
  41. S. Ibrahim, A. Ahmad, and N.S. Mohamed, Bull. Mater. Sci., 38, 1155 (2015). https://doi.org/10.1007/s12034-015-0995-8
  42. M.R. Patel, et al. Mat. Research, 12, 385 (2009). https://doi.org/10.1590/S1516-14392009000400003
  43. K.P. Ang, C.S. Lee, S.F. Cheng, C.H. Chuah, J. Appl. Polym. Sci., 131 (2014).
  44. A. Campanella, L.M. Bonnaillie, R.P. Wool, J. Appl. Polym. Sci., 112, 2567 (2009). https://doi.org/10.1002/app.29898
  45. Y. Lu, R.C. Larock, Chem. Sus. Chem., 3, 329 (2010). https://doi.org/10.1002/cssc.200900251
  46. K.P. Somania, S.S. Kansaraa, N.K. Patel, A.K. Rakshita, Int. J. Adhes. & Adhes., 23, 269 (2003). https://doi.org/10.1016/S0143-7496(03)00044-7
  47. V. Eswaramoorthi, S. Jagadeesan, S. Palanisamy, P. Kandhasamy, S. Chitra, J. Adhes. Sci. Technol., 30, 468 (2016). https://doi.org/10.1080/01694243.2015.1108951
  48. R.K. Agrawal, L.T. Drzal, J. Adhes. Sci. Technol., 9, 1381 (1995). https://doi.org/10.1163/156856195X00068
  49. R.P. Mitesh, M.S. Jignesh, K.P. Natvarbhai, H.P. Ketan, Mat. Research, 12, 385 (2009). https://doi.org/10.1590/S1516-14392009000400003
  50. N. John, R. Joseph, J. Appl. Polym. Sci., 68, 1185 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980516)68:7<1185::AID-APP15>3.0.CO;2-X
  51. J. Drelich, J.D. Miller, R.J. Good, J. Colloid. Interface Sci., 179, 37 (1996). https://doi.org/10.1006/jcis.1996.0186
  52. B.S. Lee, B.C. Chun, Y.C. Chung, K.I. Sul, and J.H. Cho, J. Appl. Polym. Sci., 83, 27 (2002). https://doi.org/10.1002/app.2228
  53. B.K. Kim, Y.J. Shin, S.M. Cho, and H.M. Jeong, J. Polym. Sci.: Polym. Phys., 38, 2652 (2000).
  54. J. Hu, Z. Yang, L. Yeung, F. Ji, and Y. Liu, Polym. Int., 54, 854 (2005). https://doi.org/10.1002/pi.1785
  55. Z.W. Wicks, Jr., D.A. Wicks, and J.W. Rosthauser, Prog. Org. Coat., 44, 161 (2002). https://doi.org/10.1016/S0300-9440(02)00002-4
  56. J. Kim, C. Lee, A. Kim, C. Lee, Sci. Emot. Sensib., 12, 77 (2009).
  57. J.S. Yoo, H.J. Chun, Polym. Sci. Technol., 10, 578 (1999).
  58. M. Szycher, Szycher's Handbook of Polyurethanes, CRC Press, New York (1999).
  59. D. Dieterich, Prog. Organic Coatings, 9, 281 (1981). https://doi.org/10.1016/0033-0655(81)80002-7
  60. S.Y. Lee, J.S. Lee, B.K. Kim, Polym. Int., 42, 609 (1996).
  61. B.P. Thapliyal, Prog. Polym. Sci., 15, 735 (1990) https://doi.org/10.1016/0079-6700(90)90010-X
  62. B.K. Kim, J.C. Lee, Polymer, 19, 223 (1995).
  63. J.B. Ahn, H.K. Cho, C.N. Jeong, S.T. Noh, J. Korean Ind. Eng. Chem., 8, 230 (1997).
  64. K.H. Lee, B.K. Kim, Polymer, 37, 2251 (1996). https://doi.org/10.1016/0032-3861(96)85871-X
  65. T.K. Kim, S.J. Kim, B.K. Kim, Polymer(Korea), 16, 604 (1992).
  66. 신용탁, et al. Korean Chem. Eng. Res., 48, 434 (2010).
  67. S.Y. Yoo, J.D. Kim, S.K. Kam, M.J. Moon, M.G. Lee, J. Env. Sci. Int., 16, 891 (2007). https://doi.org/10.5322/JES.2007.16.8.891
  68. F.S. Chuang, H.Y. Tsi, J.D. Chow, W.C. Tsen, Y.C. Shu, S.C. Jang, Polym. Derad. Stab., 93, 1753 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.07.029
  69. J.W. Lim, J.H. Yim, Polymer(Korea), 33, 569 (2009).
  70. C. Zhang, X. Zhang, J. Dai, C. Bai, Prog. Org. Coat., 63, 238 (2008). https://doi.org/10.1016/j.porgcoat.2008.05.011
  71. T.J. Pinnavaia, G.W. Beall, Polymer-Clay Nanocomposites, John Wiley & Sons Ltd., (2000).
  72. S.M. Park, et al., The Korean Society of Dyers and Finishers (2009).
  73. D. Balgude, A.S. Sabnis, J. Coat. Technol. Res., 11, 169 (2014). https://doi.org/10.1007/s11998-013-9521-3
  74. 한창민, et al., Polymer(Korea), 41, 1004 (2017). https://doi.org/10.7317/pk.2017.41.6.1004
  75. D. Trache, et al. Int. J. Biol. Macromol., 93, 789 (2016). https://doi.org/10.1016/j.ijbiomac.2016.09.056
  76. A. Dufresne, Nanocellulose: From nature to high performance tailored materials, Walter de Gruyter GmbH & Co KG (2017).
  77. Z. Zhang, J. Song, B. Han, Chem. Rev., 117, (2016).
  78. R. Ahorsu, F. Medina, M. Constanti, Energies, 11, 3366 (2018). https://doi.org/10.3390/en11123366
  79. D. Barana, et al, ACS Sustainable Chem. Eng., 4, 5258 (2016). https://doi.org/10.1021/acssuschemeng.6b00774
  80. C.R. Catalina, et al., ACS Sustainable Chem. Eng., 5, 8222 (2017). https://doi.org/10.1021/acssuschemeng.7b01895
  81. D. Saha, et al., Langmuir, 30, 900 (2014). https://doi.org/10.1021/la404112m
  82. S. Kamravaei, et al., Ind. Eng. Chem. Res., 56, 1297 (2017). https://doi.org/10.1021/acs.iecr.6b04165
  83. 바이오화학산업동향지, Trend In White Biotech, 76 (2017)
  84. 문준호, 이상현, 오정석, Polym. Sci. Technol., 29, 510 (2018).
  85. S. Shinoj, et al., Ind. Crops Prod., 33, 7 (2011). https://doi.org/10.1016/j.indcrop.2010.09.009
  86. R. Campilho, Woodhead Publishing, 275 (2017).
  87. R. Stewart, Reinf. Plast., 54, 22 (2010). https://doi.org/10.1016/S0034-3617(10)70061-8
  88. Green Car Congress (2014).