DOI QR코드

DOI QR Code

Antimicrobial effect of toothbrush with light emitting diode on dental biofilm attached to zirconia surface: an in vitro study

지르코니아 표면에 부착된 바이오필름에 대한 LED 치솔의 항균효과

  • Park, Jong Hew (Department of Periodontology and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry) ;
  • Kim, Yong-Gun (Department of Periodontology, Kyungpook National University School of Dentistry) ;
  • Um, Heung-Sik (Department of Periodontology and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry) ;
  • Lee, Si Young (Department of Microbiology and Immunology and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry) ;
  • Lee, Jae-Kwan (Department of Periodontology and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry) ;
  • Chang, Beom-Seok (Department of Periodontology and Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry)
  • 박종휴 (강릉원주대학교 치과대학 치주과학교실 및 구강과학연구소) ;
  • 김용건 (경북대학교 치과대학 치주과학교실) ;
  • 엄흥식 (강릉원주대학교 치과대학 치주과학교실 및 구강과학연구소) ;
  • 이시영 (강릉원주대학교 치과대학 미생물학 및 면역학교실) ;
  • 이재관 (강릉원주대학교 치과대학 치주과학교실 및 구강과학연구소) ;
  • 장범석 (강릉원주대학교 치과대학 치주과학교실 및 구강과학연구소)
  • Received : 2019.08.27
  • Accepted : 2019.09.01
  • Published : 2019.09.30

Abstract

Purpose: The purpose of this study was to evaluate the antimicrobial effects of a toothbrush with light-emitting diodes (LEDs) on periodontitis-associated dental biofilm attached to a zirconia surface by static and dynamic methods. Materials and Methods: Zirconia disks (12 mm diameter, 2.5 mm thickness) were inserted into a 24-well plate (static method) or inside a Center for Disease Control and Prevention (CDC) biofilm reactor (dynamic method) to form dental biofilms using Streptococcus gordonii and Fusobacterium nucleatum. The disks with biofilm were subdivided into five treatment groups-control, commercial photodynamic therapy (PDT), toothbrush alone (B), brush with LED (BL), and brush with LED+erythrosine (BLE). After treatment, the disks were agitated to detach the bacteria, and the resulting solutions were spread directly on selective agar. The number of viable bacteria and percentage of bacterial reduction were determined from colony counts. Scanning electron microscopy (SEM) was performed to visualize alterations in bacterial morphology. Results: No significant difference in biofilm formation was observed between dynamic and static methods. A significant difference was observed in the number of viable bacteria between the control and all experimental groups (P < 0.05). The percentage of bacterial reduction in the BLE group was significantly higher than in the other treated groups (P < 0.05). SEM revealed damaged bacterial cell walls in the PDT, BL, and BLE groups, but intact cell walls in the control and B groups. Conclusion: The findings suggest that an LED toothbrush with erythrosine is more effective than other treatments in reducing the viability of periodontitis-associated bacteria attached to zirconia in vitro.

목적: 이번 연구의 목적은 정적인 방법과 동적인 방법으로 형성된 지르코니아 표면에 부착된 바이오필름에 대한 LED 칫솔의 항균 효과를 평가하고자 하였다. 연구 재료 및 방법: 구강 바이오필름을 형성하기 위해 직경 12 mm, 두께 2.5 mm의 지르코니아 디스크를 24-well plate(정적 방법)와 Center for Disease Control and Prevention (CDC) biofilm reactor (동적 방법)에 디스크를 넣어 바이오필름을 형성하였다. 디스크는 아무 처치도 하지 않은 대조군, 상용화된 광역학(PDT) 키트, 치솔질(brushing) 단독, LED 치솔군, LED 치솔과 에리스로신을 같이 적용한 군, 이렇게 5개 그룹으로 구성하였다. 각 군별 처치 후, 개별 디스크를 시험관에 넣고 60 초 동안 vortexing하여 세균을 분리한 후, 분리된 세균 용액을 선택 배지를 이용하여 살아있는 세균 수를 확인한 후 실험 방법에 따른 항균 효과를 계측하였고, 주사전자현미경(SEM)을 통하여 세균의 형태 변화를 관찰하였다. 결과: 바이오필름의 형성과 구성비는 동적인 방법과 정적인 방법에 따른 차이는 관찰되지 않았다. 대조군과 실험군간에 세균의 생존률에 유의한 차이가 있었다(P < 0.05). LED 치솔과 에리스로신을 같이 적용한 군에서 가장 높은 항균 효과가 관찰되었다(P < 0.05). 주사전자현미경 사진상에서 광역학치료군과, LED 치솔군, LED 치솔과 에리스로신을 같이 적용한 군은 세균의 형태 변화가 관찰되었으나, 대조군과 치솔질 단독 사용군에서는 세균의 형태 변화가 관찰되지 않았다. 결론: 이번 연구 결과 지르코니아 표면에 부착된 바이오필름을 효과적으로 제거하는 방법으로 LED 치솔과 에리스로신을 같이 적용하는 것이 추천된다.

Keywords

References

  1. Lang NP, Berglundh T. Periimplant diseases: where are we now?-Consensus of the Seventh European Workshop on Periodontology. J Clin Periodontol 2011;38 Suppl 11:178-81. https://doi.org/10.1111/j.1600-051X.2010.01674.x
  2. Sgolastra F, Petrucci A, Severino M, Gatto R, Monaco A. Periodontitis, implant loss and periimplantitis. A meta-analysis. Clin Oral Implants Res 2015;26:e8-e16.
  3. Dalago HR, Schuldt Filho G, Rodrigues MA, Renvert S, Bianchini MA. Risk indicators for Peri-implantitis. A cross-sectional study with 916 implants. Clin Oral Implants Res 2017;28:144-50.
  4. Serino G, Strom C. Peri-implantitis in partially edentulous patients: association with inadequate plaque control. Clin Oral Implants Res 2009;20:169-74. https://doi.org/10.1111/j.1600-0501.2008.01627.x
  5. Zhuang LF, Watt RM, Mattheos N, Si MS, Lai HC, Lang NP. Periodontal and peri-implant microbiota in patients with healthy and inflamed periodontal and peri-implant tissues. Clin Oral Implants Res 2016;27:13-21.
  6. Ximenez-Fyvie LA, Haffajee AD, Socransky SS. Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis. J Clin Periodontol 2000;27:648-57. https://doi.org/10.1034/j.1600-051x.2000.027009648.x
  7. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ Jr. Communication among oral bacteria. Microbiol Mol Biol Rev 2002;66:486-505. https://doi.org/10.1128/MMBR.66.3.486-505.2002
  8. Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol 2010;8:471-80. https://doi.org/10.1038/nrmicro2381
  9. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol 1998;25:134-44. https://doi.org/10.1111/j.1600-051X.1998.tb02419.x
  10. Perez-Chaparro PJ, Duarte PM, Shibli JA, Montenegro S, Lacerda Heluy S, Figueiredo LC, Faveri M, Feres M. The current weight of evidence of the microbiologic profile associated with peri-implantitis: A systematic review. J Periodontol 2016;87:1295-304. https://doi.org/10.1902/jop.2016.160184
  11. Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol 2004;75:292-6. https://doi.org/10.1902/jop.2004.75.2.292
  12. Holst S, Blatz MB, Hegenbarth E, Wichmann M, Eitner S. Prosthodontic considerations for predictable single-implant esthetics in the anterior maxilla. J Oral Maxillofac Surg 2005;63:89-96.
  13. Chen D, Wang N, Gao Y, Shao L, Deng B. A 3-dimensional finite element analysis of the restoration of the maxillary canine with a complex zirconia post system. J Prosthet Dent 2014;112:1406-15. https://doi.org/10.1016/j.prosdent.2014.05.017
  14. Heuer W, Elter C, Demling A, Neumann A, Suerbaum S, Hannig M, Heidenblut T, Bach FW, Stiesch-Scholz M. Analysis of early biofilm formation on oral implants in man. J Oral Rehabil 2007;34:377-82. https://doi.org/10.1111/j.1365-2842.2007.01725.x
  15. Nascimento CD, Pita MS, Fernandes FHNC, Pedrazzi V, de Albuquerque Junior RF, Ribeiro RF. Bacterial adhesion on the titanium and zirconia abutment surfaces. Clin Oral Implants Res 2014;25:337-43.
  16. Rimondini L, Fare S, Chiesa R, Pedeferri MP, Carrassi A. The effect of composition, wettability and roughness of the substrate on in vivo early bacterial colonization of titanium. J Appl Biomater Biomech 2003;1:131-8.
  17. Subramani K, Jung RE, Molenberg A, Hammerle CH. Biofilm on dental implants: a review of the literature. Int J Oral Maxillofac Implants 2009;24:616-26.
  18. Renvert S, Roos-Jansaker AM, Claffey N. Non-surgical treatment of peri-implant mucositis and periimplantitis: a literature review. J Clin Periodontol 2008;35:305-15.
  19. Wainwright M. Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 1998;42:13-28. https://doi.org/10.1093/jac/42.1.13
  20. Wood S, Metcalf D, Devine D, Robinson C. Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother 2006;57:680-4. https://doi.org/10.1093/jac/dkl021
  21. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. J Natl Cancer Inst 1998;90:889-905. https://doi.org/10.1093/jnci/90.12.889
  22. Bassetti M, Schar D, Wicki B, Eick S, Ramseier CA, Arweiler NB, Sculean A, Salvi GE. Anti-infective therapy of peri-implantitis with adjunctive local drug delivery or photodynamic therapy: 12-month outcomes of a randomized controlled clinical trial. Clin Oral Implants Res 2014;25:279-87.
  23. Vohra F, Al-Rifaiy MQ, Lillywhite G, Abu Hassan MI, Javed F. Efficacy of mechanical debridement with adjunct antimicrobial photodynamic therapy for the management of peri-implant diseases: a systematic review. Photochem Photobiol Sci 2014;13:1160-8. https://doi.org/10.1039/C4PP00083H
  24. Wang H, Li W, Zhang D, Li W, Wang Z. Adjunctive photodynamic therapy improves the outcomes of peri-implantitis: a randomized controlled trial. Aust Dent J 2019;64:256-62. https://doi.org/10.1111/adj.12705
  25. Lee H, Kim YG, Um HS, Chang BS, Lee SY, Lee JK. Efficacy of an LED toothbrush on a Porphyromonas gingivalis biofilm on a sandblasted and acid-etched titanium surface: an in vitro study. J Periodontal Implant Sci 2018;48:164-73. https://doi.org/10.5051/jpis.2018.48.3.164
  26. Blanc V, Isabal S, Sanchez MC, Llama-Palacios A, Herrera D, Sanz M, Leon R. Characterization and application of a flow system for in vitro multispecies oral biofilm formation. J Periodontal Res 2014;49:323-32. https://doi.org/10.1111/jre.12110
  27. Franklin MJ, Chang C, Akiyama T, Bothner B. New technologies for studying biofilms. Microbiol Spectr 2015;3. doi: 10.1128/microbiolspec.MB-0016-2014.
  28. Song WS, Lee JK, Park SH, Um HS, Lee SY, Chang BS. Comparison of periodontitis-associated oral biofilm formation under dynamic and static conditions. J Periodontal Implant Sci 2017;47:219-30. https://doi.org/10.5051/jpis.2017.47.4.219
  29. Louropoulou A, Slot DE, Van der Weijden F. The effects of mechanical instruments on contaminated titanium dental implant surfaces: a systematic review. Clin Oral Implants Res 2014;25:1149-60. https://doi.org/10.1111/clr.12224
  30. Salvi GE, Ramseier CA. Efficacy of patient-administered mechanical and/or chemical plaque control protocols in the management of peri-implant mucositis. A systematic review. J Clin Periodontol 2015;42 Suppl 16:S187-201. https://doi.org/10.1111/jcpe.12321
  31. Park JB, Koh M, Jang YJ, Choi BK, Kim KK, Ko Y. Removing bacteria from rough surface titanium discs with chlorhexidine and additional brushing with dentifrice. Gerodontology 2016;33:28-35. https://doi.org/10.1111/ger.12106
  32. Schwarz F, John G, Hegewald A, Becker J. Nonsurgical treatment of peri-implant mucositis and peri-implantitis at zirconia implants: a prospective case series. J Clin Periodontol 2015;42:783-8. https://doi.org/10.1111/jcpe.12439
  33. Song HH, Lee JK, Um HS, Chang BS, Lee SY, Lee MK. Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens. J Periodontal Implant Sci 2013;43:72-8. https://doi.org/10.5051/jpis.2013.43.2.72
  34. Habiboallah G, Mahdi Z, Mahbobeh NN, Mina ZJ, Sina F, Majid Z. Bactericidal effect of visible light in the presence of erythrosine on Porphyromonas gingivalis and Fusobacterium nucleatum compared with diode laser, an in vitro study. Laser Ther 2014;23:263-71. https://doi.org/10.5978/islsm.14-OR-20
  35. Metcalf D, Robinson C, Devine D, Wood S. Enhancement of erythrosine-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation. J Antimicrob Chemother 2006;58:190-2. https://doi.org/10.1093/jac/dkl205
  36. Roder HL, Raghupathi PK, Herschend J, Brejnrod A, Knochel S, Sorensen SJ, Burmolle M. Interspecies interactions result in enhanced biofilm formation by co-cultures of bacteria isolated from a food processing environment. Food Microbiol 2015;51:18-24. https://doi.org/10.1016/j.fm.2015.04.008