DOI QR코드

DOI QR Code

Lightweight and Performance of Anti-Collision Strength of Automobiles Based on Carbon Fiber Composites

  • Received : 2019.05.31
  • Accepted : 2019.08.30
  • Published : 2019.09.27

Abstract

The widespread use of automobiles has greatly increased energy demand and exhaust gas pollution. In order to save energy, reduce emissions and protect the environment, making lightweights automobiles is an effective measure. In this paper, carbon fiber composites and automobile B-pillars are briefly introduced, and then the mechanical properties and impact resistance of the DC590 steel B-pillars and carbon fiber composites B-pillars are simulated by the ABAQUS finite element software. The results show that the quality of compound B-pillars is reduced by 50.76 % under the same dimensions, and the mechanical property of unit mass is significantly better than that of metal B-pillars. In the course of a collision, the kinetic energy of the two B-pillars is converted into internal energy, but the total energy remains the same; the converted internal energy of the composite B-pillars is greater, the deformation is smaller and the maximum intrusion and intrusion speed is also smaller, indicating that the anti-collision performance of the composite B-pillars is excellent. In summary, the carbon fiber composites can not only reduce the quality of the B-pillars, but also improve their anti-collision performance.

Keywords

References

  1. H. Cheng, H. Xue, C. Hong and X. Zhang, Compos. Sci. Technol., 140, 63 (2017). https://doi.org/10.1016/j.compscitech.2016.12.031
  2. J. G. Cho, J. S. Koo and H. S. Jung, J. Mech. Sci. Technol., 30, 673 (2016). https://doi.org/10.1007/s12206-016-0123-8
  3. P. Vitale, G. Francucci, H. Rapp and A. Stocchi, Compos. Struct., 194, 188 (2018). https://doi.org/10.1016/j.compstruct.2018.03.065
  4. B. Xu, S. Zhou, C. Hong, J. Han and X. Zhang, Carbon, 102, 487 (2016). https://doi.org/10.1016/j.carbon.2016.02.077
  5. Z. Liu, J. Lu and P. Zhu, Compos. Struct., 140, 630 (2016). https://doi.org/10.1016/j.compstruct.2015.12.031
  6. D. H. Kim, H. G. Kim and H. S. Kim, Compos. Struct., 131, 742 (2015). https://doi.org/10.1016/j.compstruct.2015.06.028
  7. Y. Hu, C. Liu, J. Zhang, G. Ding and Q. Wu, Adv. Mech. Eng., 7, 1 (2015).
  8. M. Hengstermann, N. Raithel, A. Abdkader and C. Cherif, Mater. Sci. Forum, 825-826, 695 (2015). https://doi.org/10.4028/www.scientific.net/MSF.825-826.695
  9. H. D. Nguyen-Tran, V. T. Hoang, V. T. Do, D. M. Chun and Y. J. Yum, Materials, 11, 429 (2018). https://doi.org/10.3390/ma11030429
  10. B. Xu, R. He, C. Hong, Y. Ma, W. Wen, H. Li, T. Cheng, D. Fang, Y. Yang, J. Alloy. Compd., 702, 551 (2017). https://doi.org/10.1016/j.jallcom.2017.01.242
  11. Z. Zhe and D. Yu, Appl. Acoustics, 120, 34 (2017). https://doi.org/10.1016/j.apacoust.2017.01.003
  12. J. Kaufmann, H. Rabe, N. Siebert, P. Wolf, H. Cebulla and S. Odenwald, Proc. Eng., 147, 562 (2016). https://doi.org/10.1016/j.proeng.2016.06.239
  13. Q. Luca, D. Kim, C. Jang, N. Kim and S. Hong, Fract. Fatigue Wear, (2017) p. 012017.
  14. H. Y. Li, Y. Dai, X. F. Lyu, Mater. Sci. Forum, 921, 85 (2018). https://doi.org/10.4028/www.scientific.net/MSF.921.85
  15. I. S. Son, Y. J. Shin, J. B. Park, G. P. Son, D. K. Shin and J. J. Lee, Appl. Mech. Mater. 749, 286 (2015). https://doi.org/10.4028/www.scientific.net/AMM.749.286