References
- Kim, S. J., Kim, S. W., and Yoon, Y. T., Master Optimization Process Based on Neural Net Works Ensemble for 24-h Solar Irradiance Forecast, Conference of Information and Control Systems, pp. 209-211, 2017.
- Kim, M. J., Lee, D. K., and Kim, G. S., Analysis to reduce PV Generation Output Variation using Energy Storage System, Power Electronics Conference, pp. 113-114, 2013.
- Moon, S. I., Economic Assessment of Grid-Connected Energy Storage System, Journal of Electrical World Monthly Magazine, pp. 44-48, 2013.
- Park, C. K. and Kim, Y. S., Feasibility Study of P2P Power Trading in Korea, Korea Energy Economics Institute, Research Report 15-10, pp. 1-85, 2016
- Spot, E. P. E. X., EPEX Spot. EPEX Spot, Paris, France, accessed Dec, 18, 2017.
- Cornaro, C., Pierro, M., and Bucci, F., Master Optimization Process Based on Neural Net Works Ensemble for 24-h Solar Irradiance Forecast, Solar Energy, Vol. 111, pp. 297-312, 2015. https://doi.org/10.1016/j.solener.2014.10.036
- Amrouche, B. and Le Pivert, X., Artificial Neural Network Based Daily Local Forecasting for Global Solar Radiation, Applied Energy, Vol. 130, pp. 333-341, 2014. https://doi.org/10.1016/j.apenergy.2014.05.055
- Olatomiwa, L., Mekhilef, S., Shamshirband, S., Mohammadi, K., Petkovic, D., and Sudheer, C., A Support Vector Machine-firefly Algorithm-based Model for Global Solar Radiation Prediction, Solar Energy, Vol. 115, pp. 632-644, 2015. https://doi.org/10.1016/j.solener.2015.03.015
- Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M., Time Series Analysis: Forecasting and Control, John Wiley & Sons, 2015.
- Diagne, M., David, M., Lauret, P., Boland, J., and Schmutz, N., Review of Solar Irradiance Forecasting Methods and A Proposition for Small-scale Insular Grids, Renewable and Sustainable Energy Reviews, Vol. 27, pp. 65-76, 2013. https://doi.org/10.1016/j.rser.2013.06.042
- Monteiro, C., Santos, T., Fernandez-Jimenez, L. A., Ramirez-Rosado, I. J., and Terreros-Olarte, M. S., Short-term Power Forecasting Model for Photovoltaic Plants Based on Historical Similarity, Energies, Vol. 6, pp. 2624-2643, 2013. https://doi.org/10.3390/en6052624
- Tuohy, A., Zack, J., Haupt, S. E., Sharp, J., Ahlstrom, M., Dise, S., Grimit, E., Mohrlen, M., Lange, M., Casado, M. G., Black, J., Marquis, M., and Collier, C., Solar Forecasting: Methods, Challenges, and Performance, IEEE Power and Energy Magazine, Vol. 13, pp. 50-59, 2015.
- Ren, Y., Suganthan, P., and Srikanth, N., Ensemble Methods for Wind and Solar Power Forecasting—a State-of-the-art Review, Renewable and Sustainable Energy Reviews, Vol. 50, pp. 82-91, 2015. https://doi.org/10.1016/j.rser.2015.04.081
- Azimi, R., Ghayekhloo, M., and Ghofrani, M., A Hybrid Method Based on A New Clustering Technique and Multilayer Perceptron Neural Networks for Hourly Solar Radiation Forecasting, Energy Conversion and Management, Vol. 118, pp. 331-344, 2016. https://doi.org/10.1016/j.enconman.2016.04.009
- Sharma, V., Yang, D., Walsh, W., and Reindl, T., Short Term Solar Irradiance Forecasting Using a Mixed Wavelet Neural Network, Renewable Energy, Vol. 90, pp. 481-492, 2016. https://doi.org/10.1016/j.renene.2016.01.020
- Alonso-Montesinos, J., Batlles, F. J., and Portillo, C., Solar Irradiance Forecasting at One-minute Intervals for Different sky Conditions Using sky Camera Images, Energy Conversion and Management, Vol. 105, pp. 1166-1177, 2015. https://doi.org/10.1016/j.enconman.2015.09.001
- Aguiar, L. M., Pereira, B., David, M., Díaz, F., and Lauret, P. Use of Satellite Data to Improve Solar Radiation Forecasting with Bayesian Artificial Neural Networks, Solar Energy, Vol. 122, pp. 1309-1324, 2015. https://doi.org/10.1016/j.solener.2015.10.041
- Notton, G., Voyant, C., Fouilloy, A., Duchaud, J. L., and Nivet, M. L. Some Applications of ANN to Solar Radiation Estimation and Forecasting for Energy Applications, Applied Sciences, Vol. 9, No. 1, p. 209, 2019. https://doi.org/10.3390/app9010209
- Gutierrez-Corea, F. V., Manso-Callejo, M. A., Moreno-Regidor, M. P., and Manrique-Sancho, M. T. Forecasting Short-term Solar Irradiance Based on Artificial Neural Networks and Data From Neighboring Meteorological Stations, Solar Energy, Vol. 134, pp. 119-131, 2016. https://doi.org/10.1016/j.solener.2016.04.020
- Dong, Z., Yang, D., Reindl, T., and Walsh, W. M. A Novel Hybrid Approach Based on Self-organizing Maps, Support Vector Regression and Particle Swarm Optimization to Forecast Solar Irradiance, Energy, Vol. 82, pp. 570-577, 2015. https://doi.org/10.1016/j.energy.2015.01.066
- de Paiva, G. M., Pimentel, S. P., Leva, S., and Mussetta, M. Intelligent Approach to Improve Genetic Programming Based Intra-Day Solar Forecasting Models, In 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1-8. IEEE, 2018.
- Trapero, J. R., Kourentzes, N., and Martin, A. Short-term Solar Irradiation Forecasting Based on Dynamic Harmonic Regression, Energy, Vol. 84, 289-295, 2015. https://doi.org/10.1016/j.energy.2015.02.100
- Di Piazza, A., Di Piazza, M. C., and Vitale, G. Solar and Wind Forecasting by NARX Neural Networks, Renewable Energy and Environmental Sustainability, Vol. 1, p. 39, 2016. https://doi.org/10.1051/rees/2016047
- Lima, F. J., Martins, F. R., Pereira, E. B., Lorenz, E., and Heinemann, D. Forecast for Surface Solar Irradiance at the Brazilian Nrtheastern Region Using NWP Model and Artificial Neural Networks, Renewable Energy, Vol. 87, pp. 807-818, 2016. https://doi.org/10.1016/j.renene.2015.11.005
- Agoua, X. G., Girard, R., and Kariniotakis, G. Short-term Spatio-temporal Forecasting of Photovoltaic Power Production, IEEE Transactions on Sustainable Energy, Vol. 9, No. 2, pp. 538-546, 2017. https://doi.org/10.1109/tste.2017.2747765
- De Giorgi, M. G., Congedo, P. M., and Malvoni, M. Photovoltaic Power Forecasting Using Statistical Methods: Impact of Weather Data, IET Science, Measurement & Technology, Vol. 8, No. 3, pp. 90-97, 2014.
- Bouzerdoum, M., Mellit, A., and Pavan, A. M. A Hybrid Model (SARIMA-SVM) for Short-term Power Forecasting of a Small-scale Grid-connected Photovoltaic Plant, Solar Energy, Vol. 98, pp. 226-235, 2013. https://doi.org/10.1016/j.solener.2013.10.002
- Gandelli, A., Grimaccia, F., Leva, S., Mussetta, M., and Ogliari, E. Hybrid Model Analysis and Validation for PV Energy Production Forecasting, In 2014 International Joint Conference on Neural Networks (IJCNN), pp. 1957-1962. IEEE, July, 2014.
- Antonanzas, J., Urraca, R., Aldama, A., Fernandez-Jimenez, L. A., and Martinez-de-Pison, F. J., Single and Blended Models for Day-Ahead Photovoltaic Power Forecasting, In International Conference on Hybrid Artificial Intelligence Systems, pp. 427-434, Springer, Cham., June, 2017.
Cited by
- Linear-Gompertz Model-Based Regression of Photovoltaic Power Generation by Satellite Imagery-Based Solar Irradiance vol.13, pp.4, 2019, https://doi.org/10.3390/en13040781
- A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power vol.13, pp.24, 2019, https://doi.org/10.3390/en13246623