• Title/Summary/Keyword: Forecasting horizon

Search Result 19, Processing Time 0.022 seconds

The Effect of Prior Price Trends on Optimistic Forecasting (이전 가격 트렌드가 낙관적 예측에 미치는 영향)

  • Kim, Young-Doo
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.10
    • /
    • pp.83-89
    • /
    • 2018
  • Purpose - The purpose of this study examines when the optimism impact on financial asset price forecasting and the boundary condition of optimism in the financial asset price forecasting. People generally tend to optimistically forecast their future. Optimism is a nature of human beings and optimistic forecasting observed in daily life. But is it always observed in financial asset price forecasting? In this study, two factors were focused on considering whether the optimism that people have applied to predicting future performance of financial investment products (e.g., mutual fund). First, this study examined whether the degree of optimism varied depending on the direction of the prior price trend. Second, this study examined whether the degree of optimism varied according to the forecast period by dividing the future forecasted by people into three time horizon based on forecast period. Research design, data, and methodology - 2 (prior price trend: rising-up trend vs falling-down trend) × 3 (forecast time horizon: short term vs medium term vs long term) experimental design was used. Prior price trend was used between subject and forecast time horizon was used within subject design. 169 undergraduate students participated in the experiment. χ2 analysis was used. In this study, prior price trend divided into two types: rising-up trend versus falling-down trend. Forecast time horizon divided into three types: short term (after one month), medium term (after one year), and long term (after five years). Results - Optimistic price forecasting and boundary condition was found. Participants who were exposed to falling-down trend did not make optimistic predictions in the short term, but over time they tended to be more optimistic about the future in the medium term and long term. However, participants who were exposed to rising-up trend were over-optimistic in the short term, but over time, less optimistic in the medium and long term. Optimistic price forecasting was found when participants forecasted in the long term. Exposure to prior price trends (rising-up trend vs falling-down trend) was a boundary condition of optimistic price forecasting. Conclusions - The results indicated that individuals were more likely to be impacted by prior price tends in the short term time horizon, while being optimistic in the long term time horizon.

Temporal Fusion Transformers and Deep Learning Methods for Multi-Horizon Time Series Forecasting (Temporal Fusion Transformers와 심층 학습 방법을 사용한 다층 수평 시계열 데이터 분석)

  • Kim, InKyung;Kim, DaeHee;Lee, Jaekoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.2
    • /
    • pp.81-86
    • /
    • 2022
  • Given that time series are used in various fields, such as finance, IoT, and manufacturing, data analytical methods for accurate time-series forecasting can serve to increase operational efficiency. Among time-series analysis methods, multi-horizon forecasting provides a better understanding of data because it can extract meaningful statistics and other characteristics of the entire time-series. Furthermore, time-series data with exogenous information can be accurately predicted by using multi-horizon forecasting methods. However, traditional deep learning-based models for time-series do not account for the heterogeneity of inputs. We proposed an improved time-series predicting method, called the temporal fusion transformer method, which combines multi-horizon forecasting with interpretable insights into temporal dynamics. Various real-world data such as stock prices, fine dust concentrates and electricity consumption were considered in experiments. Experimental results showed that our temporal fusion transformer method has better time-series forecasting performance than existing models.

Forecasting the Baltic Dry Index Using Bayesian Variable Selection (베이지안 변수선택 기법을 이용한 발틱건화물운임지수(BDI) 예측)

  • Xiang-Yu Han;Young Min Kim
    • Korea Trade Review
    • /
    • v.47 no.5
    • /
    • pp.21-37
    • /
    • 2022
  • Baltic Dry Index (BDI) is difficult to forecast because of the high volatility and complexity. To improve the BDI forecasting ability, this study apply Bayesian variable selection method with a large number of predictors. Our estimation results based on the BDI and all predictors from January 2000 to September 2021 indicate that the out-of-sample prediction ability of the ADL model with the variable selection is superior to that of the AR model in terms of point and density forecasting. We also find that critical predictors for the BDI change over forecasts horizon. The lagged BDI are being selected as an key predictor at all forecasts horizon, but commodity price, the clarksea index, and interest rates have additional information to predict BDI at mid-term horizon. This implies that time variations of predictors should be considered to predict the BDI.

A Study on Long-Term Spatial Load Forecasting Using Trending Method (추세분석법에 의한 영역의 장기 수요예측)

  • Hwang Kab-Ju;Choi Soo-Keon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.604-609
    • /
    • 2004
  • This paper suggests a long-term distribution area load forecasting algorithm which offers basic data for distribution planning of power system. To build forecasting model, 4-level hierarchical spatial structure is introduced: System, Region, Area, and Substation. And, each spatial load can be decided proportional to its portion in the higher level. This paper introduces the horizon year loads to improve the forecasting results. And, this paper also introduces an effective load transfer algorithm to improve forecasting stability in case of new or stopped substations. The proposed model is applied to the load forecasting of KEPCO system composed of 16 regions, 85 areas and 761 substations, and the results are compared with those of econometrics model to verify its validity.

Short-term Flood Forecasting Using Artificial Neural Networks (인공신경망 이론을 이용한 단기 홍수량 예측)

  • 강문성;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.45-57
    • /
    • 2003
  • An artificial neural network model was developed to analyze and forecast Short-term river runoff from the Naju watershed, in Korea. Error back propagation neural networks (EBPN) of hourly rainfall and runoff data were found to have a high performance In forecasting runoff. The number of hidden nodes were optimized using total error and Bayesian information criterion. Model forecasts are very accurate (i.e., relative error is less than 3% and $R^2$is greater than 0.99) for calibration and verification data sets. Increasing the time horizon for application data sets, thus mating the model suitable for flood forecasting. decreases the accuracy of the model. The resulting optimal EBPN models for forecasting hourly runoff consists of ten rainfall and four runoff data(ANN0410 model) and ten rainfall and ten runoff data(ANN1010 model). Performances of the ANN0410 and ANN1010 models remain satisfactory up to 6 hours (i.e., $R^2$is greater than 0.92).

Forecasting Project Cost and Time using Fuzzy Set Theory and Contractors' Judgment

  • Alshibani, Adel
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.174-178
    • /
    • 2015
  • This paper presents a new method for forecasting construction project cost and time at completion or at any intermediate time horizon of the project duration. The method is designed to overcome identified limitations of current applications of earned value method in forecasting project cost and time. The proposed method usesfuzzy set theory to model uncertainties associated with project performance and it integrates the earned value technique and the contractors' judgement. The fuzzy set theory is applied as an alternative approach to deterministic and probabilistic methods. Using fuzzy set theory allows contractors to: (1) perform risk analysis for different scenarios of project performance indices, and (2) perform different scenarios expressing vagueness and imprecision of forecasted project cost and time using a set of measures and indices. Unlike the current applications of Earned Value Method(EVM), The proposed method has a numberof interesting features: (1) integrating contractors' judgement in forecasting project performance; (2) enabling contractors to evaluate the risk associated with cost overrun in much simpler method comparing with that of simulation, and (3) accounting for uncertainties involved in the forecasting project cost.

  • PDF

A Binomial Weighted Exponential Smoothing for Intermittent Demand Forecasting (간헐적 수요예측을 위한 이항가중 지수평활 방법)

  • Ha, Chunghun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.50-58
    • /
    • 2018
  • Intermittent demand is a demand with a pattern in which zero demands occur frequently and non-zero demands occur sporadically. This type of demand mainly appears in spare parts with very low demand. Croston's method, which is an initiative intermittent demand forecasting method, estimates the average demand by separately estimating the size of non-zero demands and the interval between non-zero demands. Such smoothing type of forecasting methods can be suitable for mid-term or long-term demand forecasting because those provides the same demand forecasts during the forecasting horizon. However, the smoothing type of forecasting methods aims at short-term forecasting, so the estimated average forecast is a factor to decrease accuracy. In this paper, we propose a forecasting method to improve short-term accuracy by improving Croston's method for intermittent demand forecasting. The proposed forecasting method estimates both the non-zero demand size and the zero demands' interval separately, as in Croston's method, but the forecast at a future period adjusted by binomial weight according to occurrence probability. This serves to improve the accuracy of short-term forecasts. In this paper, we first prove the unbiasedness of the proposed method as an important attribute in forecasting. The performance of the proposed method is compared with those of five existing forecasting methods via eight evaluation criteria. The simulation results show that the proposed forecasting method is superior to other methods in terms of all evaluation criteria in short-term forecasting regardless of average size and dispersion parameter of demands. However, the larger the average demand size and dispersion are, that is, the closer to continuous demand, the less the performance gap with other forecasting methods.

Real Time Flood Forecasting Using Artificial Neural Networks (인공신경망 이론을 이용한 실시간 홍수량 예측 및 해석)

  • Kang, Moon-Seong;Park, Seung-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.277-280
    • /
    • 2002
  • An artificial neural network model was developed to analyze and forecast real time river runoff from the Naju watershed, in Korea. Model forecasts are very accurate (i.e., relative error is less than 3% and $R^2$ is great than 0.99) for calibration data sets. Increasing the time horizon for validation data sets, thus making the model suitable for flood forecasting, decreases the accuracy of the model. The resulting optimal EBPN models for forecasting real time runoff consists of ten rainfall and four and ten runoff data (ANN0410 and ANN1010 models). Performances of the ANN0410 and ANN1010 models remain satisfactory up to 6 hours (i.e., $R^2$ is great than 0.92).

  • PDF

Comparative Analysis of Travel Demand Forecasting Models (여행수요예측모델 비교분석)

  • Kim, Jong Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.2
    • /
    • pp.121-130
    • /
    • 1995
  • Forecasting accuracy is examined in the context of Michigan travel demand. Eight different annual models are used to forecast up to two years ahead, and nine different quarterly models up to four quarters. In the evaluation of annual models' performance, multiple regression performed better than the other methods in both the one year and two year forecasts. For quarterly models, Winters exponential smoothing and the Box-Jenkins method performed better than naive 1 s in the first quarter ahead, but these methods in the second, third, and fourth quarters ahead performed worse than naive 1 s. The sophisticated models did not outperform simpler models in producing quarterly forecasts. The best model, multiple regression, performed slightly better when fitted to quarterly rather than annual data: however, it is not possible to strongly recommend quarterly over annual models since the improvement in performance was slight in the case of multiple regression and inconsistent across the other models. As one would expect, accuracy declines as the forecasting time horizon is lengthened in the case of annual models, but the accuracy of quarterly models did not confirm this result.

  • PDF

A cognitive model for forecasting progress of multiple disorders with time relationship

  • Kim, Soung-Hie;Park, Wonseek;Chae, In-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.505-510
    • /
    • 1996
  • Many diseases cause other diseases with strength of influences and time intervals. Prognostic and therapeutic assessments are the important part of clinical medicine as well as diagnostic assessments. In cases where a patient already has manufestations of multiple disorders (complications), progress forecasting and therapy decision by physicians without support tools are very dificult: physicians often say that "Once complications set in, the patient may die". Treating complications are difficult tasks for physicians, because they have to consider all of the complexities, possibilities and interactions between the diseases. The prediction of multiple disorders has many bundles that arise from such time-dependent interrelationships between diseases and nonlinear progress. This paper proposes a model based on time-dependent influences, which appropriately describes the progress of mulitple disorders, and gives some modificaitons for applying this model to medical domains: time-dependent influence matrix manifestation vector, therapy efficacy matrix, S-shaped curve approximation, definitions of which are provided. This research proposes an algorithm for forecasting the state of each disease on the time horizon and for evaluation of therapy alternatives with not toy example, but real patient history of multiple disorders.disorders.

  • PDF