DOI QR코드

DOI QR Code

Recent Progress and Prospect of Luminescent Solar Concentrator

발광형 태양광 집광기 최신 연구 동향

  • Song, Hyung-Jun (Department of Safety Engineering, Seoul National University of Science and Technology)
  • 송형준 (서울과학기술대학교 안전공학과)
  • Received : 2019.07.09
  • Accepted : 2019.07.13
  • Published : 2019.08.30

Abstract

Luminescent solar concentrator (LSC), consisting of luminophore included glass or substrate with edge-mounted photovoltaic cell, is semi-transparent, energy harvesting devices. The luminophore absorbs incident solar light and re-emit photons, while the waveguide plate allows re-emitted photons to reach edge or bottom mounted photovoltaic cells with reduced losses. If the area of LSC is much larger than that of photovoltaic cell, this system can effectively concentrate solar light. In order to improve the performance of LSC, new materials and optical structures have been suggested by many research groups. For decreasing re-abosprion losses, it is essential to minimize the overlap between absorption and photoluminescence solar spectrum of luminophoroe. Moreover, the combination of selective top reflector and reflective optical cavity structure significantly boosts the waveguide efficiency in the LSC. As a result of many efforts, commercially available LSCs have been demonstrated and verified in the outdoor. Also, it is expected to generate electricity in buildings by replacing conventional glass to LSCs.

Keywords

References

  1. REN 21, Renewables 2019, Global Status Report 2019.
  2. Fu, F., Feurer, T., Weiss, T. P., Pisoni, S., Avancini, E., Andres, C., Buecheler, S., and Tiwari. A. N., High-efficiency Inverted Semi-transparent Planar Perovskite Solar Cells in Substrate Configuration, Nature Energy Vol. 2, p. 16190, 2016. https://doi.org/10.1038/nenergy.2016.190
  3. Lunt, R. R. and Bulovic, V., Transparent, Near-infrared Organic Photovoltaic Solar Cells for Window and Energy-scavenging Applications, Applied Physics Letters, Vol. 98, p. 113305, 2011. https://doi.org/10.1063/1.3567516
  4. Bergren, M. R., Makarov, N. S., Ramasamy, K., Jackson, A., Guglielmetti, R., and McDaniel, H., High-performance $CuInS_2$ Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows, ACS Energy Letter, Vol. 3, No. 3, pp. 520-525, 2018. https://doi.org/10.1021/acsenergylett.7b01346
  5. Corrado, C., Leow, S. W., Osborn, M., Carbone, I., Hellier, K., Short, M., Alers, G., and Carter, S. A., Power Generation Study of Luminescent Solar Concentrator Greenhouse, Journal of Renewable and Sustainable Energy, Vol. 8, p. 43502, 2016. https://doi.org/10.1063/1.4958735
  6. Yablonovitch, E., Thermodynamics of the Fluorescent Planar Concentrator, Journal of Optical Society of America, Vol. 70, No. 11, pp. 1362-1363 ,1980. https://doi.org/10.1364/JOSA.70.001362
  7. Klimov, V. I., Baker, T. A., Lim, J., Velizhanin, K. A., and McDaniel, H., Quality Factor of Luminescent Solar Concentrators and Practical Concentration Limits Attainable with Semiconductor Quantum Dots, ACS Photonics, Vol. 3, No. 6, pp. 1138-1148, 2016. https://doi.org/10.1021/acsphotonics.6b00307
  8. Coropceanu, I. and Bawendi, M. G., Core/Shell Quantum Dot Based Luminescent Solar Concentrators with Reduced Reabsorption and Enhanced Efficiency, Nano Letters, Vol. 14, pp. 4097-4101, 2014. https://doi.org/10.1021/nl501627e
  9. Jeong, B. G., Park, Y. S., Chang, J. H., Cho, I., Kim, J. K., Kim, H., Char, K., Cho, J., Klimov, V. I., Park, P., Lee, D. C., and Bae, W. K., Colloidal Spherical Quantum Wells with Near-unity Photoluminescence Quantum Yield and Suppressed Blinking, ACS Nano, Vol. 10, pp. 9297-9305, 2016. https://doi.org/10.1021/acsnano.6b03704
  10. Li, H., Wu, K., Lim, J., Song, H.-J., and Klimov, V. I., Doctor-blade Deposition of Quantum Dots Onto Standard Window Glass for Low-loss Large-area Luminescent Solar Concentrators, Nature Energy, Vol. 1, p. 16157, 2016. https://doi.org/10.1038/nenergy.2016.157
  11. Meinardi, F., Colombo, A., Velizhanin, K. A., Simonutti, R., Lorenzon, M., Beverina, L., Viswanatha, R., Klimov, V. I., and Brovelli, S., Large-area Luminescent Solar Concentrators Based on 'Stokes-shift-engineered' Nanocrystals in a Mass-polymerized PMMA Matrix, Nature Photonics, Vol. 8, pp. 392-399, 2014. https://doi.org/10.1038/nphoton.2014.54
  12. Zhao, H. G., Benetti, D., Jin, L., Zhou, Y. F., Rosei, F., and Vomiero, A., Absorption Enhancement in "Giant" Core/alloyed‐shell Quantum Dots for Luminescent Solar Concentrator, Small, Vol. 12, No. 38, pp. 5354-5365, 2016. https://doi.org/10.1002/smll.201600945
  13. Meinardi, F., McDaniel H., Carulli, F., Colombo, A., Velizhanin, K. A., Makarov, N. S., Simonutti, R., Klimov, V. I., and Brovelli, S., Highly Efficient Large-area Colourless Luminescent Solar Concentrators Using Heavy-metal-free Colloidal Quantum Dots, Nature Nanotechnology, Vol. 10, pp. 878-885, 2015. https://doi.org/10.1038/nnano.2015.178
  14. Wu, K., Li, H. and Klimov, V. I., Tandem Luminescent Solar Concentrators Based on Engineered Quantum Dots. Nature Photonics, Vol. 12, p. 105, 2018. https://doi.org/10.1038/s41566-017-0070-7
  15. Zhao, H. G., Zhou, Y. F., Benetti, D., Ma, D. L., and Rosei, F., Perovskite Quantum Dots Integrated in Large-area Luminescent Solar Concentrators, Nano Energy, Vol. 37, pp. 214-223, 2017. https://doi.org/10.1016/j.nanoen.2017.05.030
  16. Meinardi, F., Ehrenberg, S., Dhamo, L., Carulli, F., Mauri, M., Bruni, F., Simonutti, R., Kortshagen U., and Brovelli, S., Highly Efficient Luminescent Solar Concentrators Based on Earth-abundant Indirect-bandgap Silicon Quantum Dots, Nature Photonics, Vol. 11, pp. 177-185, 2017. https://doi.org/10.1038/nphoton.2017.5
  17. Zhou, Y. F., Benetti, D., Tong, X., Jin, L., Wang, Z. M., Ma, D. L., Zhao, H. G., and Rosei, F., Colloidal Carbon Dots Based Highly Stable Luminescent Solar Concentrators, Nano Energy, Vol. 44, pp. 378-387. 2018. https://doi.org/10.1016/j.nanoen.2017.12.017
  18. Wu, J., Dai, J., Shao, Y., and Sun, Y., One-step Synthesis of Fluorescent Silicon Quantum Dots (Si-QDs) and Their Application for Cell Imaging, RSC Advances, Vol. 5, No. 102, pp. 83581-83587, 2015. https://doi.org/10.1039/C5RA13119G
  19. Zhang, B., Gao, C., Soleimaninejad, H., White, J. M., Smith, T. A., Jones, D. J., Ghiggino, K. P., and Wong, W. W. H., Highly Efficient Luminescent Solar Concentrators by Selective Alignment of Donor-emitter Fluorophores, Chemistry of Materials, Vol. 31, No. 8, pp. 3001-3008, 2019. https://doi.org/10.1021/acs.chemmater.9b00647
  20. Slooff, L. H., Bende, E. E., Burgers, A. R., Budel, T., Pravettoni, M., Kenny, R. P., Dunlop, E. D., and Buchtemann, A., A Luminescent Solar Concentrator with 7.1% Power Conversion Efficiency, Physica Status Solidi-Rapid Research Letters, Vol. 2, No. 6, pp. 257-259, 2008. https://doi.org/10.1002/pssr.200802186
  21. Chou, C. -H., Hsu, M. -H., and Chen, F. -C., Flexible Luminescent Waveguiding Photovoltaics Exhibiting Strong Scattering Effects from the Dye Aggregation, Nano Energy, Vol. 15, pp. 729-736, 2015. https://doi.org/10.1016/j.nanoen.2015.06.001
  22. Zhao, Y., Meek, G., Levine, B., and Lunt, R. R., Near-infrared Harvesting Transparent Luminescent Solar Concentrators, Advance Optical Materials, Vol. 2, pp. 606-611, 2014. https://doi.org/10.1002/adom.201400103
  23. Levitt, J. A. and Weber, W. H., Materials for Luminescent Greenhouse Solar Collectors, Applied Optics, Vol. 16, No. 10, pp. 2684-2689, 1977. https://doi.org/10.1364/AO.16.002684
  24. Benjamin, W. E., Veit, D. R., Perkins, M. J., Bain, E., Scharnhorst, K., McDowall, S., Patrick, D. L., and Gilbertson, J. D., Sterically Engineered Perylene Dyes for High Efficiency Oriented Fluorophore Luminescent Solar Concentrators, Chemistry of Materials, Vol. 26, No. 3, pp. 1291-1293, 2014.
  25. Batchelder, J., Zewail, A., and Cole, T., Luminescent Solar Concentrators. 2: Experimental and Theoretical Analysis of Their Possible Efficiencies, Applied. Optics, Vol. 20, pp. 3733-3754, 1980. https://doi.org/10.1364/AO.20.003733
  26. Seybold, G. and Wagenblast, G., New Perylene and Violanthrone Dyestuffs for Fluorescent Collectors, Dyes Pigments, Vol. 11, pp. 303-317, 1989. https://doi.org/10.1016/0143-7208(89)85048-X
  27. Dienel, T., Bauer, C., Dolamic, I., and Brühwiler, D., Spectral-based Analysis of Thin Film Luminescent Solar Concentrators. Solar Energy, Vol. 84, No. 4, pp. 1366-1369, 2010. https://doi.org/10.1016/j.solener.2010.04.015
  28. Correia, S. F. H., Lima, P. P., André, P. S., Sá Ferreira, M. R., and Carlos, L. A. D., High-efficiency Luminescent Solar Concentrators for Flexible Waveguiding Photovoltaics, Solar Energy Materials and Solar Cells, Vol. 138, pp. 51-57, 2015. https://doi.org/10.1016/j.solmat.2015.02.032
  29. Polishuk, P., Plastic Optical Fibers Branch Out, IEEE Commun. Mag., Vol. 140, 2006.
  30. Reisfeld, R., New Developments in Luminescence for Solar Energy Utilization, Optical Materials, Vol. 32, No. 9, pp. 850-856, 2010. https://doi.org/10.1016/j.optmat.2010.04.034
  31. Slooff, L. H., Kinderman, R., Burgers, A. R., Büchtemann, A., Danz, R., Meyer, T. B., Chatten, A. J., Farrell, D., Barnham, K. W. J., and Van Roosmalen, J. A. M., The Luminescent Concentrator Illuminated, Proceedings of SPIE, Vol. 6197, pp. 1-8, 2006.
  32. Schrecengost, J. R., Bowser, S. D., Weible, S. W., Solomon, J. M., Minner, L. J., Gresh, J. T., and Wittmershaus, B. P., Increasing the Area of A White Scattering Background Can Increase the Power Output of a Luminescent Solar Concentrator, Solar Energy, Vol. 170, pp. 132-137, 2018. https://doi.org/10.1016/j.solener.2018.05.022
  33. Song, H.-J., Jeong, B. G., Lim, J., Lee, D. C., Bae, W. K., and Klimov, V. I., Performance Limits of Luminescent Solar Concentrators Tested with Seed/Quantum-well Quantum Dots in a Selective Reflectorbased Optical Cavity, Nano Letters, Vol. 18, pp. 395-404, 2017. https://doi.org/10.1021/acs.nanolett.7b04263
  34. Xu, L., Yao, Y., Bronstein, N. D., Li, L., Alivisatos, A. P., and Nuzzo, R. G., Enhanced Photon Collection in Luminescent Solar Concentrators with Distributed Bragg Reflectors, ACS Photonics, Vol. 3, No. 2, pp. 278-285, 2016. https://doi.org/10.1021/acsphotonics.5b00630
  35. Bronstein, N. D., Yao, Y., Xu, L., O'Brien, E., Powers, A. S., Ferry, V. E., Alivisatos, A. P., and Nuzzo, R. G.,Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration, ACS Photonics, Vol. 2, No. 11, pp. 1576-1583, 2015. https://doi.org/10.1021/acsphotonics.5b00334
  36. Debije, M. G., Van, M. -P., Verbunt, P. P. C., Kastelijn, M. J., van der Blom, R. H. L., Broer, D. J., and Bastiaansen, C. W. M., Effect on the Output of a Luminescent Solar Concentrator on Application of Organic Wavelength-selective Mirrors, Applied Optics, Vol. 49, No. 4, pp. 745-751, 2010. https://doi.org/10.1364/AO.49.000745
  37. Verbunt, P. P. C., Tsoi, S., Debije, M. G., Boer, D. J., Bastiaansen, C. W. M., Lin, C.-W., and de Boer, D. K. G., Increased Efficiency of Luminescent Solar Concentrators After Application of Organic Wavelength Selective Mirrors, Optics Express, Vol. 20, No. S5, pp. A655-A668, 2012. https://doi.org/10.1364/OE.20.00A655
  38. Needell, D. R., Ilic, O., Bukowsky, C. R., Nett, Z., Xu, L., He, J., Bauser, H., Lee, B. G., Geisz, J. F., Nuzzo, R. G., Alivisatos, A. P., and Atwater, H. A., Design Criteria for Micro-optical Tandem Luminescent Solar Concentrators, IEEE Journal of Photovoltaics., Vol. 8, No. 6, pp. 1560-1567, 2018. https://doi.org/10.1109/JPHOTOV.2018.2861751
  39. Kosten, E. D., Kayes, B. M., and Atwater, H. A., Experimental Demonstration of Enhanced Photon Recycling in Angle-restricted GaAs Solar Cells, Energy and Environmental Science, Vol. 7, pp. 1907-1912, 2014. https://doi.org/10.1039/C3EE43584A
  40. Lunardi, M. M., Needell, D. R., Bauser, H., Phelan, M., Atwater, H. A., and Corkish, R., Lifetime Assessment of tandem LSC-Si devices, Energy, Vol. 181, pp. 1-10, 2019. https://doi.org/10.1016/j.energy.2019.05.085
  41. Currie, M. J., Mapel, J. K., Heidel, T. D., Goffri, S., and Baldo, M. A., High-Efficiency Organic Solar Concentrators for Photovoltaics, Science, Vol. 321, No. 5886, pp. 226-228, 2008. https://doi.org/10.1126/science.1158342
  42. Kanellis, M., de Jong, M. M., Slooff, L., and Debije, M. G., The Solar Noise Barrier Project: 1. Effect of Incident Light Orientation on the Performance of a Large-scale Luminescent Solar Concentrator Noise Barrier, Renewable Energy, Vol. 103, pp. 647-652, 2017. https://doi.org/10.1016/j.renene.2016.10.078
  43. Lamnatou, C. and Chemisana, D., Solar Radiation Manipulations and Their Role in Greenhouse Claddings: Fluorescent Solar Concentrators, Photoselective and Other Materials, Renewable and Sustainable Energy Reviews, Vol. 27, pp. 175-190, 2013. https://doi.org/10.1016/j.rser.2013.06.052
  44. Vossen, F. M., Aarts, M. P. G., and Debije, M. G., Visual Performance of Red Luminescent Solar Concentrating Windows in An Office Environment, Energy and Buildings, Vol. 113, pp. 123-132, 2016. https://doi.org/10.1016/j.enbuild.2015.12.022