DOI QR코드

DOI QR Code

3D Resistivity Survey for Dam Safety Inspection

저수지 안전진단을 위한 3차원 전기비저항 탐사

  • Cho, In-Ky (Division of Geology and Geophysics, Kangwon National University) ;
  • Yong, Hwan-Ho (Rural Research Institute, Korea Rural Community Corporation)
  • 조인기 (강원대학교 지질.지구물리학부) ;
  • 용환호 (한국농어촌공사 농어촌연구원)
  • Received : 2019.04.28
  • Accepted : 2019.06.25
  • Published : 2019.08.31

Abstract

Resistivity method has been used for the dam safety inspection and, for the convenience of fieldwork, two-dimensional (2D) resistivity data has been usually measured along the dam crest. However, since the dam has three-dimensional (3D) structure, 2D resistivity survey along the dam crest violates 2D assumption and 3D effects caused by 3D topography and material properties in the dam distort the inversion result of 2D resistivity data acquired along the dam crest. Furthermore, it is really hard to evaluate the 3D structure of the dam and 3D leakage pathway using 2D resistivity survey because 2D resistivity survey can provide only 2D resistivity section beneath the survey line. In this study, 3D resistivity survey was conducted at a dam in Korea. By comparing the results from 3D and 2D resistivity surveys, merit and demerits of 3D survey were investigated. Finally, it was confirmed that 3D survey can provide more accurate information about the dam status and 3D leakage pathway compared to the 2D survey. Therefore the 3D resistivity survey should be actively expanded for more accurate dam safety inspection even though more time and expense are required.

전기비저항 탐사법은 저수지 누수 구간의 탐지를 위한 효과적인 물리탐사법으로 저수지 안전진단을 위해 널리 사용되어 왔다. 저수지에서 수행되는 대부분의 전기비저항 탐사는 현장자료획득의 편의성을 고려하여 제체에 평행한 측선에 대한 2차원 탐사가 주로 적용되고 있다. 그러나 저수지는 3차원 구조를 갖기 때문에 2차원 가정에 위배되며, 2차원 해석 결과는 3차원 효과에 의한 왜곡을 피할 수 없다. 또한 2차원 탐사는 전기비저항의 2차원 단면만을 제공하므로 저수지의 3차원 구조에 대한 해석이 어려우며, 3차원적 누수 경로의 파악이 불가능하다. 이 연구에서는 저수지에서 3차원 전기비저항 탐사를 실시하고, 그 해석 결과를 2차원 탐사와 비교 분석하여 2차원 탐사의 한계 및 3차원 탐사의 장점을 제시하였다. 3차원 탐사는 2차원 탐사에 비하여 보다 정밀하게 저수지 상태 및 누수 경로에 대한 3차원적 정보를 제공해 주는 것으로 확인되었다. 따라서 3차원 탐사는 보다 정확한 저수지 안전진단을 위하여 적극 확대되어야 할 것으로 판단된다.

Keywords

References

  1. Cho, I. K., Kang, H. J., and Kim, K. J., 2006, Distortion of resistivity data due to the 3D geometry of embankment dams, Geophys. and Geophys. Explor., 9(4), 291-298 (in Korean with English abstract).
  2. Cho, I. K., Lee, K. S., and Kang, H. J., 2010, 3D Effect of embankment dam geometry to resistivity Data, Geophys. and Geophys. Explor., 13(4), 397-406 (in Korean with English abstract).
  3. Cho, I. K., Lee, K. S., Kim, Y. J., and Yoon, D. S., 2015, Inversion of resistivity data using data-weighting, Geophys. and Geophys. Explor., 18(1), 9-13 (in Korean with English abstract). https://doi.org/10.7582/GGE.2015.18.1.009
  4. Cho, I. K., Ha, I. S., Kim, K. S., Ahn, H. Y., Lee, S. and Kang, H. J., 2014, 3D effects on 2D resistivity monitoring in earthfill dams, Near Surface Geophys., 12(1), 73-81. https://doi.org/10.3997/1873-0604.2013065
  5. Cho, I. K., and Yeom, J. Y., 2007, Crossline resistivity tomography for the delineation of anomalous seepage pathways in an embankment dam, Geophysics, 72(2), G31-G38. https://doi.org/10.1190/1.2435200
  6. Johansson, S., and Dahlin, T., 1996, Seepage monitoring in an earth embankment dam by repeated resistivity measurements, Eur. J. Environ. Eng. Geophys., 1(3), 229-247. https://doi.org/10.4133/JEEG1.3.229
  7. KRC (Korea Rural Community Corporation), 2019, http://irims.ekr.or.kr
  8. Oh, S. H., and Sun, C., 2008, Combined analysis of electrical resistivity and geotechnical SPT blow counts for the safety assessment of fill dam, Environ. Geology, 54(1), 31-42. https://doi.org/10.1007/s00254-007-0790-y
  9. Park, S. G., Kim, J. H., and Seo, G. W., 2005, Application of electrical resistivity monitoring technique to maintenance of embankments, Geophys. and Geophys. Explor., 8(2), 177-183 (in Korean with English abstract).
  10. Panthulu, T. V., Krishnaiah, C., and Shirke, J. M., 2001, Detection of seepage path in earth dams using self-potential and electrical resistivity methods, Engin. Geology, 59(3-4), 281-295. https://doi.org/10.1016/S0013-7952(00)00082-X
  11. Sjodahl, P., Dahlin, T., and Zhou, B., 2006, 2.5D resistivity modeling of embankment dams to assess influence from geometry and material properties, Geophysics, 71(3), G107-G114. https://doi.org/10.1190/1.2198217
  12. Song, S. H., Song, Y. H., and Kwon, B. D., 2005, Application of hydrogeological and geophysical methods to delineate leakage pathways in an earth fill dam, Explor. Geophys., 36(1), 92-96. https://doi.org/10.1071/EG05092
  13. Yi, M. J., Kim, J. H., Song, Y., and Chung, S. H., 2000, Dam seepage investigation using two- and three-dimensional resistivity surveys; Application of Geophysical Technologies to Agricultural Fields, 2000 Ann. Mtg. and Special Symposium of KSEG, 41-53 (in Korean).