DOI QR코드

DOI QR Code

OSCULATING VERSUS INTERSECTING CIRCLES IN SPACE-BASED MICROLENS PARALLAX DEGENERACIES

  • Received : 2019.05.16
  • Accepted : 2019.07.20
  • Published : 2019.08.31

Abstract

I investigate the origin of arc degeneracies in satellite microlens parallax ${\pi}_E$ measurements with only late time data, e.g., t > $t_0+t_E$ as seen from the satellite. I show that these are due to partial overlap of a series of osculating, exactly circular, degeneracies in the ${\pi}_E$ plane, each from a single measurement. In events with somewhat earlier data, these long arcs break up into two arclets, or (with even earlier data) two points, because these earlier measurements give rise to intersecting rather than osculating circles. The two arclets (or points) then constitute one pair of degeneracies in the well-known four-fold degeneracy of space-based microlens parallax. Using this framework of intersecting circles, I show that next-generation microlens satellite experiments could yield good ${\pi}_E$ determinations with only about five measurements per event, i.e., about 30 observations per day to monitor 1500 events per year. This could plausibly be done with a small (hence cheap, in the spirit of Gould & Yee 2012) satellite telescope, e.g., 20 cm.

Keywords

References

  1. Alard, C. & Lupton, R. H. 1998, A Method for Optimal Image Subtraction, ApJ, 503, 325 https://doi.org/10.1086/305984
  2. Alcock, C., Alssman, R. A., Alves, D. R., et al. 2001, Direct Detection of a Microlens in the Milky Way, Nature, 414, 617 https://doi.org/10.1038/414617a
  3. Bennett, D. P., Anderson, J., Bond, I.A., et al. 2006, Identification of the OGLE-2003-BLG-235/MOA-2003-BLG-53 Planetary Host Star, ApJ, 647, L171 https://doi.org/10.1086/507585
  4. Batista, V., Dong, S., Gould, A., et al. 2005, Mass Measurement of a Single Unseen Star and Planetary Detection Efficiency for OGLE 2007-BLG-050, 2009, ApJ, 508, 467
  5. Boutreux, T. & Gould, A. 1996, Monte Carlo Simulations of MACHO Parallaxes from a Satellite, ApJ, 462, 705 https://doi.org/10.1086/177183
  6. Calchi Novati, S., Gould, A., Yee, J. C., et al. 2015, Spitzer IRAC Photometry for Time Series in Crowded Fields, ApJ, 814, 92 https://doi.org/10.1088/0004-637X/814/2/92
  7. Calchi Novati, S. & Scarpetta, G., 2016, Microlensing Parallax for Observers in Heliocentric Motion, ApJ, 824, 109 https://doi.org/10.3847/0004-637X/824/2/109
  8. Dong, S., Udalski, A., Gould, A., et al. 2007, First Space-Based Microlens Parallax Measurement: Spitzer Observations of OGLE-2005-SMC-001, ApJ, 664, 862 https://doi.org/10.1086/518536
  9. Dong, S., Gould, A., Udalski, A., et al. 2009, OGLE-2005-BLG-071Lb, the Most Massive M Dwarf Planetary Companion?, ApJ, 695, 970 https://doi.org/10.1088/0004-637X/695/2/970
  10. Dong, S., Meraud, A., Delplancke-Strobele, F.., et al. 2019, First Resolution of Microlensed Images, ApJ, 871, 70 https://doi.org/10.3847/1538-4357/aaeffb
  11. Gaudi, B. S. & Gould, A. 1997, Satellite Parallaxes of Lensing Events toward the Galactic Bulge, ApJ, 477, 152 https://doi.org/10.1086/303670
  12. Ghosh, H., DePoy, D. L., Gal-Yam, A., et al. 2004, Potential Direct Single-Star Mass Measurement, ApJ, 615, 450 https://doi.org/10.1086/423665
  13. Gould, A. 1992, Extending the MACHO search to about $10^6$ solar masses, ApJ, 392, 442 https://doi.org/10.1086/171443
  14. Gould, A. 1994, MACHO velocities from satellite-based parallaxes, ApJL, 421, L75 https://doi.org/10.1086/187191
  15. Gould, A. 1995, MACHO parallaxes from a single satellite, ApJL, 441, L21 https://doi.org/10.1086/187779
  16. Gould, A., 1999, Microlens Parallaxes with SIRTF, ApJ, 514, 869 https://doi.org/10.1086/306981
  17. Gould, A. 2000, A Natural Formalism for Microlensing, ApJ, 542, 785 https://doi.org/10.1086/317037
  18. Gould, A. 2004, Resolution of the MACHO-LMC-5 Puzzle: The Jerk-Parallax Microlens Degeneracy, ApJL, 606, 319 https://doi.org/10.1086/382782
  19. Gould, A. 2014, Microlens Masses from 1-D Parallaxes and Heliocentric Proper Motions, JKAS, 47, 215
  20. Gould, A. & Horne, K. 2013, Kepler-like Multi-plexing for Mass Production of Microlens Parallaxes, ApJ, 779, L28 https://doi.org/10.1088/2041-8205/779/2/L28
  21. Gould, A. & Yee, J.C. 2012, Cheap Space-based Microlens Parallaxes for High-magnification Events, ApJ, 755, L17 https://doi.org/10.1088/2041-8205/755/1/L17
  22. Gould, A., Miralda-Escude, J. & Bahcall, J.N. 1994, Microlensing Events: Thin Disk, Thick Disk, or Halo?, ApJ, 423, L105 https://doi.org/10.1086/187247
  23. Gould, A., Ryu, Y.-H. Calchi Novati, S., et al., 2019, A Very Low Mass-Ratio Spitzer Microlens Planet, JKAS, submitted, arXiv:1906.11183
  24. Hog, E., Novikov, I. D., & Polanarev, A.G. 1995, MACHO photometry and astrometry, A&A, 294, 287
  25. Jiang, G., DePoy, D. L., Gal-Yam, A., et al. 2004, OGLE-2003-BLG-238: Microlensing Mass Estimate of an Isolated Star, ApJ, 617, 307
  26. Jung, Y. K., Gould, A., Udalski, A., et al. 2019, Spitzer Parallax of OGLE-2018-BLG-0596: A Low-mass-ratio Planet around an M-dwarf, AJ, 158, 28 https://doi.org/10.3847/1538-3881/ab237f
  27. Muraki, Y., Han, C., Bennett, D. P., et al. 2011, Discovery and Mass Measurements of a Cold, 10 Earth Mass Planet and Its Host Star, ApJ, 741, 22 https://doi.org/10.1088/0004-637X/741/1/22
  28. Miyamoto, M. & Yoshii, Y. 1995, Astrometry for Determining the MACHO Mass and Trajectory, AJ, 110, 1427 https://doi.org/10.1086/117616
  29. Paczynski, B. 1986, Gravitational Microlensing by the Galactic Halo, ApJ, 304, 1 https://doi.org/10.1086/164140
  30. Park B.-G., DePoy, D.L., Gaudi, B. S. et al. 2004, MOA 2003-BLG-37: A Bulge Jerk-Parallax Microlensing Degeneracy, ApJ, 609, 166 https://doi.org/10.1086/420926
  31. Poindexter, S., Afonso, C., Bennett, D. P., et al. Systematic Analysis of 22 Microlensing Parallax Candidates, 2005, ApJ, 633, 914 https://doi.org/10.1086/468182
  32. Refsdal, S. 1966, On the Possibility of Determining the Distances and Masses of Stars from the Gravitational Lens Effect, MNRAS, 134, 315 https://doi.org/10.1093/mnras/134.3.315
  33. Shin, I.-G., Udalski, A., Yee, J.C., et al. 2018, OGLE-2016-BLG-1045: A Test of Cheap Space-based Microlens Parallaxes, ApJ, 863, 23 https://doi.org/10.3847/1538-4357/aacdf4
  34. Smith, M., Mao, S., & Paczynski, B., 2003, Acceleration and Parallax Effects in Gravitational Microlensing, MNRAS, 339, 925 https://doi.org/10.1046/j.1365-8711.2003.06183.x
  35. Shvartzvald, Y., Yee, J. C., Calchi Novati, S. et al. 2017b, An Earth-mass Planet in a 1 au Orbit around an Ultracool Dwarf, ApJL, 840, L3 https://doi.org/10.3847/2041-8213/aa6d09
  36. Udalski, A., Yee, J. C., Gould, A., et al. 2015, Spitzer as a Microlens Parallax Satellite: Mass Measurement for the OGLE-2014-BLG-0124L Planet and its Host Star, ApJ, 799, 237 https://doi.org/10.1088/0004-637X/799/2/237
  37. Walker, M.A. 1995, Microlensed Image Motions, ApJ, 453, 37 https://doi.org/10.1086/176367
  38. Yee, J. C., Shvartzvald, Y., Gal-Yam, A. et al. 2012, MOA-2011-BLG-293Lb: A Test of Pure Survey Microlensing Planet Detections, ApJ, 755, 102 https://doi.org/10.1088/0004-637X/755/2/102
  39. Yee, J. C., Udalski, A., Calchi Novati, S., et al., 2015a, First Space-based Microlens Parallax Measurement of an Isolated Star: Spitzer Observations of OGLE-2014-BLG-0939, ApJ, 802, 76 https://doi.org/10.1088/0004-637X/802/2/76
  40. Yee, J. C., Gould, A., Beichman, C., et al. 2015b, Criteria for Sample Selection to Maximize Planet Sensitivity and Yield from Space-Based Microlens Parallax Surveys, ApJ, 810, 155 https://doi.org/10.1088/0004-637X/810/2/155
  41. Zhu, W., Udalski, A., Calchi Novati, S., et al. 2017a, Toward a Galactic Distribution of Planets. I. Methodology & Planet Sensitivities of the 2015 High-Cadence Spitzer Microlens Sample, AJ, 154, 210 https://doi.org/10.3847/1538-3881/aa8ef1
  42. Zhu, W., Huang, X., Calchi Novati, S., et al. 2017b, An Isolated Microlens Observed from K2, Spitzer, and Earth, ApJ, 839, L41 https://doi.org/10.3847/1538-4357/aa68dc