DOI QR코드

DOI QR Code

유압 드리프터의 동적성능 최적화 사례

Case of Dynamic Performance Optimization for Hydraulic Drifter

  • 노대경 (한국과학기술정보연구원 대구경북지원) ;
  • 이대희 (현대자동차 R&H성능개발2팀) ;
  • 장주섭 (가천대학교 기계공학과) ;
  • 윤주섭 (한국생산기술연구원 대경지역본부 메카트로닉스융합기술그룹) ;
  • 이동원
  • 투고 : 2018.08.17
  • 심사 : 2019.05.07
  • 발행 : 2019.06.30

초록

그간 국내 유압 드리프터는 해외 선진사의 제품을 벤치마킹하여 개발되었지만, 이는 한국형 유압드릴 파워팩 특성(대유량, 저압)에 적합하지 않아 우수한 타격성능을 나타내지 못하였으며, 이로 인해 최적설계에 대한 연구 진행도 미진한 상태였다. 이에 본 연구에서는 대유량을 소화할 수 있도록 용량이 재설계된 유압 드리프터에 대해 다목적함수 최적화를 수행하고, 이를 통해 타격출력 향상과 공급압력 및 서지압력을 감소시키는 것을 목표로 한다. 이러한 연구의 진행방법을 요약하면 다음과 같다. 먼저 타격출력과 공급압력 및 서지압력 개선에 대한 목표를 설정하고 이에 대한 다목적함수 최적화를 수행한다. 이후 최적화된 설계치로 제작된 시제품의 시험결과와 해석모델의 해석결과 비교를 통해 최적화된 해석모델의 신뢰성을 확보한다. 본 연구에서는 유압시스템 해석 소프트웨어인 SimulationX와 다목적함수 최적화 프로그램인 EasyDesign이 사용되었으며, 위와 같은 연구를 통하여 한국형 유압드릴에 적합한 고출력 드리프터 개발 목적에 부합하는 결과를 얻을 수 있었다.

Domestic hydraulic drifters till now have been developed by benchmarking products from overseas leading companies. However, they do not have excellent impact performance as they are not suitable for characteristics (large flow rate and low pressure) of Korean hydraulic drill power pack, and therefore, research on the optimum design has not made much headway. This study performs multi-objective function optimization for hydraulic drifters whose capacity has been redesigned to deal with the large flow rate, and also with the help of this function, it aims to improve impact power and reduce supply and surge pressure. A summary of the research study is as follows: First, we set goals for improving impact power, supply pressure, and surge pressure, and then perform multi-objective function optimization on them. After that, we secure the reliability of the optimized analytical model by comparing the test results of the prototype built by the optimized design with the analysis results of the analytical model. This study used SimulationX, that is the hydraulic system analysis software, and EasyDesign, which is a multi-objective function optimization program. Through this research, we have achieved the results that satisfy the goal of developing high power drifters suitable for Korean type hydraulic drills.

키워드

SMROBX_2019_v28n2_35_f0001.png 이미지

Fig. 1. Drawing of drifter

SMROBX_2019_v28n2_35_f0002.png 이미지

Fig. 2. Analysis model of drifter

SMROBX_2019_v28n2_35_f0003.png 이미지

Fig. 3. Convergency history in optimization process

SMROBX_2019_v28n2_35_f0004.png 이미지

Fig. 4. Comparison of Impact energy and impact frequency in 4 variable combinations

SMROBX_2019_v28n2_35_f0005.png 이미지

Fig. 5. Comparison of impact energy before and after optimization

SMROBX_2019_v28n2_35_f0006.png 이미지

Fig. 6. Comparison of impact frequency before and after optimization

SMROBX_2019_v28n2_35_f0007.png 이미지

Fig. 7. Comparison of overall impact performance before and after optimization

SMROBX_2019_v28n2_35_f0008.png 이미지

Fig. 8. Comparison of surge pressure before and after optimization

SMROBX_2019_v28n2_35_f0009.png 이미지

Fig. 9. Comparison of supply line formation pressure characteristics

SMROBX_2019_v28n2_35_f0010.png 이미지

Fig. 10. Comparison of input-output power characteristic

SMROBX_2019_v28n2_35_f0011.png 이미지

Fig. 11. Comparison of impact efficiency

SMROBX_2019_v28n2_35_f0012.png 이미지

Fig. 12. Test bench experiment

SMROBX_2019_v28n2_35_f0013.png 이미지

Fig. 13. Hydraulic drill experiment

SMROBX_2019_v28n2_35_f0014.png 이미지

Fig. 14. Comparison of drifter’s characteristic between simulation and experimental results

SMROBX_2019_v28n2_35_f0015.png 이미지

Fig. 15. Overall impact performance of drifter considering leakage

Table 1. Multi-objective function optimization goal setting

SMROBX_2019_v28n2_35_t0001.png 이미지

Table 2. Creation process of the initial meta model

SMROBX_2019_v28n2_35_t0002.png 이미지

Table 3. Process of sequential approximate optimization

SMROBX_2019_v28n2_35_t0003.png 이미지

Table 4. Comparison of relative error between simulation and experimental results

SMROBX_2019_v28n2_35_t0004.png 이미지

Table 5. Comparison of potential limit performance before and after optimization

SMROBX_2019_v28n2_35_t0005.png 이미지

참고문헌

  1. Alphin, M. S., K. Sankaranarayanasamy and S. P. Sivapirakasam (2010) "Experimental evaluation of whole body vibration exposure from tracked rock breaking operations", Journal of Low Frequency Noise Vibration and Active Control, 29(2), 101-110. https://doi.org/10.1260/0263-0923.29.2.101
  2. Baek, H. Y., H. W. Chang and I. J. Lee (2005) "Optimal Design of a Hydraulic Breaker using Taguchi Method", Proceeding of the KSME 60th Autumn Conference 2005, korea, 2033-2038.
  3. Cho, H. D., S. H. Kim and S. G. Lee (2016) "A Study of Application for dependent variable identify on a hydraulic breaker vibration measurements using support vector machine (SVM)", Proceeding of KSME EP Spring Conference 2016, Taean, Korea, 34-35.
  4. Gorodilov, L. V. (2000) "Analysis of working cycle of hydraulic impact machine using similarity criteria", Journal of Mining Science, 36(5), 476-480. https://doi.org/10.1023/A:1016668726073
  5. Kwak, K. S. and H. W. Chang (2008) "Performance Optimization of a Fully Hydraulic Breaker using Taguchi Method", Journal of Drive and Control, 5(3), 41-48.
  6. Lee, D. H., D. K. Noh, S. S. Park, G. H. Lee, Y. K. Kang, J. S. Cho and J. S. Jang (2017) "Impact Performance Optimization of Auto-Sensing Breaker using Multi-objective Function" Journal of the Korea Society for Simulation, 26(4), 11-21. https://doi.org/10.9709/JKSS.2017.26.4.011
  7. Noh, D. K., J. S. Jang, J. H. Seo, H. S. Kim and S. H. Park (2014a) "Development of Drifter's Hydraulic System Model and Its Validation", Journal of Drive and Control, 11(3), 14-21. https://doi.org/10.7839/ksfc.2014.11.3.014
  8. Noh, D. K., J. H. Seo, J. S. Park, S. H. Park and J. S. Jang (2014b) "Analysis of Drifter's Critical Performance Factors Using Its Hydraulic Analysis Model", Journal of the Korea Society for Simulation, 23(3), 33-40. https://doi.org/10.9709/JKSS.2014.23.3.033
  9. Noh, D. K., M. B. Kim, Y. K. Kang and J. S. Jang (2015) "Impact performance optimization of drifter installed in hydraulic drill", Proceeding of KSFC Spring Conference 2015, Seongnam, Korea, 95-99.
  10. Noh D. K. (2017) "Development of Hydraulic Drifter using Multi-objective Optimization", Gachon University Graduate School Mechanical Engineering Department Doctorate Thesis.
  11. Noh, D. K., D. H. Lee, J. S. Yun and D. W. Lee (2018) "Development of Analysis Model and Sensitivity Analysis for High-Power Hydraulic Drifter Design", Journal of the Korea Society for Simulation, 27(2), 11-24. https://doi.org/10.9709/JKSS.2018.27.2.011
  12. Ryoo, T. J. and H. W. Chang (2010) "Performance Optimization of a Gas-Assisted Hydraulic Breaker with Dual Stroke", Journal of Drive and Control, 7(1), 11-19.
  13. Shin, D. Y. and K. B. Kwon (2011) "Study on Performance Optimization a Hydraulic Breaker", Transactions of the Korean Society of Mechanical Engineers-A, 35(6), 677-682. https://doi.org/10.3795/KSME-A.2011.35.6.677
  14. I. J. Hwang. and G. J. Park (2010). "Development of a Multiobjective Optimization Algorithm Using Data Distribution Characteristics", Transactions of the Korean Society of Mechanical Engineers-A, 34(12), 1793-1803. https://doi.org/10.3795/KSME-A.2010.34.12.1793
  15. Marler, R.T. and Arora, J.S (2004), "Survey of Multi-Objective Optimization Method for Engineering", Structural and Multidisciplinary Optimization, 26(6), 369-395. https://doi.org/10.1007/s00158-003-0368-6
  16. Noh, D.K., Y.K. Kang, J.S. Cho and J.S. Jang (2016) "Case study on impact performance optimization of hydraulic breakers", Journal of SpringerPlus, 5(1102)
  17. EasyDesign user manual
  18. Soosan Drifter Catalog
  19. Atals Copco Drifter Catalog
  20. Roxar Drifter Catalog