• Title/Summary/Keyword: Hydraulic drifter

Search Result 7, Processing Time 0.027 seconds

Development of Analysis Model and Sensitivity Analysis for High-Power Hydraulic Drifter Design (고출력 유압 드리프터 설계를 위한 해석모델 개발 및 민감도 분석)

  • Noh, Dae-Kyung;Lee, Dae-Hee;Yun, Joo-Seop;Lee, Dong-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.11-24
    • /
    • 2018
  • The purpose of the present study is to develop an analysis model to analyze the design parameter sensitivity of a high-power drifter suitable for implementation in Korean hydraulic drills. This study aims to establish a basis for the optimization of the impact performance and stability of a high-power drifter by investigating the effects of each design parameter on the impact performance via design parameter sensitivity analysis. To begin, an analysis model of drifter dynamics is developed, and the reliability of the analysis model is verified by comparing the analysis results to the experimental results. The drifter is then redesigned for compatibility with Korean hydraulic drills. Finally, design parameter sensitivity analysis of the redesigned drifter is conducted to determine the effects of the design parameters on the impact performance, and to extract the high-sensitivity parameters. SimulationX, which is multi-physics analysis software, is used to develop the analysis model, and EasyDesign is employed for design parameter sensitivity analysis.

Impact performance for high frequency hydraulic rock drill drifter with sleeve valve

  • Guo, Yong;Yang, Shu Yi;Liu, De Shun;Zhang, Long Yan;Chen, Jian Wen
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.39-46
    • /
    • 2016
  • A high frequency hydraulic rock drill drifter with sleeve valve is developed to use on arm of excavator. In order to ensure optimal working parameters of impact system for the new hydraulic rock drill drifter controlled by sleeve valve, the performance test system is built using the arm and the hydraulic source of excavator. The evaluation indexes are gained through measurement of working pressure, supply oil flow and stress wave. The relations of working parameters to impact system performance are analyzed. The result demonstrates that the maximum impact energy of the drill drifter is 98.34J with impact frequency of 71HZ. Optimal pressure of YZ45 rock drill is 12.8 MPa-13.6MPa, in which the energy efficiency reaches above 58.6%, and feature moment of energy distribution is more than 0.650.

Experimental Evaluation of Percussion Performance for Rock-Drill Drifter

  • Seo, Jaho;Park, Jin-Sun;Kim, Heungsub;Noh, Dae Kyung
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Purpose: The objective of this study was to understand the operating mechanism of the rock-drill drifter, to explain how to setup an experimental test system and measure the strain of the drifter's rod, and to evaluate the drifter's performance with respect to the impact energy and blow frequency. Methods: The structure of the rock-drill drifter and its operating principle regarding the impact process were analyzed. Static calibration was carried out to calculate the correction factor using a drifter rod as the first step of the experimental test. The impact energy and blow frequency were then calculated based on strain measurements of the drifter's rod. Results: Experimental results showed that the tested drifter elicited a blow frequency of 3330 BPM (Blows Per Minute) and generated impact energy of 170 J/blow. This indicates that the drifter elicits a higher percussion speed and results in a lower impact energy compared to the hydraulic breaker at the same input power. Conclusions: The study proposed methodologies that deal with the experimental setup and the evaluation of the performance of the rock-drill drifter. These methodologies can be extensively used for validating and improving the percussion performance of the drilling equipment.

Analysis of Drifter's Critical Performance Factors Using Its Hydraulic Analysis Model (드리프터 유압 해석모델을 활용한 성능격차 유발 인자 접근 사례)

  • Noh, Dae-Kyung;Seo, Jaho;Park, Jin-Sun;Park, James;Jang, Joo-Sup
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.3
    • /
    • pp.33-40
    • /
    • 2014
  • Drifter is equipment which is hard to localize. Performance of prototype hasn't performed well compared to product of leading companies even though advanced foreign firm's product were dead copied. This study shows cases of approaching the factor which produces performance gap through drifter hydraulic analysis model which is core component of rock drill. Progression of procedure is following. 1) Securing reliability of the analysis model by comparing impact test result with analysis result. 2) Drawing a graph which indicates performance gap between prototype and drifter of advanced foreign firm by using analysis model. 3) Approaching the factor which produces performance gap with analysing variable of the analysis model. Software used for this analysis is SimulationX.

Development of Drifter's Hydraulic System Model and Its Validation (드리프터의 유압시스템 해석모델 개발 및 신뢰성 검토)

  • Noh, D.K.;Jang, J.S.;Seo, J.H.;Kim, H.S.;Park, S.H.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.14-21
    • /
    • 2014
  • The goal of this study drifter is to understand the operating mechanism of a drifter and to suggest a reliable analysis model which can be used for evaluating the drifter's performance from the viewpoint of impact frequency and energy. For this, the working principle of drifter and functions of its main components were analyzed, and a simulation model was developed based on the analysis. The model was validated using experimental tests on a test-bench. A comparative study of simulation and experimental results indicated that the suggested model accurately represents the real drifter system in terms of impact frequency and impact energy per blow.

Case of Dynamic Performance Optimization for Hydraulic Drifter (유압 드리프터의 동적성능 최적화 사례)

  • Noh, Dae-kyung;Lee, Dae-Hee;Jang, Joo-Sup;Yun, Joo-Seop;Lee, Dong-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.35-48
    • /
    • 2019
  • Domestic hydraulic drifters till now have been developed by benchmarking products from overseas leading companies. However, they do not have excellent impact performance as they are not suitable for characteristics (large flow rate and low pressure) of Korean hydraulic drill power pack, and therefore, research on the optimum design has not made much headway. This study performs multi-objective function optimization for hydraulic drifters whose capacity has been redesigned to deal with the large flow rate, and also with the help of this function, it aims to improve impact power and reduce supply and surge pressure. A summary of the research study is as follows: First, we set goals for improving impact power, supply pressure, and surge pressure, and then perform multi-objective function optimization on them. After that, we secure the reliability of the optimized analytical model by comparing the test results of the prototype built by the optimized design with the analysis results of the analytical model. This study used SimulationX, that is the hydraulic system analysis software, and EasyDesign, which is a multi-objective function optimization program. Through this research, we have achieved the results that satisfy the goal of developing high power drifters suitable for Korean type hydraulic drills.