DOI QR코드

DOI QR Code

그리드핀을 적용한 작은 세장비를 갖는 자탄의 천음속 공력특성 전산해석

Numerical simulation of the aerodynamic characteristics on the grid-fin adapted sub-munition with low aspect ratio under transonic condition

  • 투고 : 2019.01.31
  • 심사 : 2019.05.07
  • 발행 : 2019.06.30

초록

작은 세장비(aspect ratio)를 갖는 형상의 자탄(sub-munition)은 자유낙하 시 비행 자세 안정성이 불량하고 항력조절이 어렵다. 이러한 문제점을 해결하기 위해 일반적인 비행 날개 대신 그리드핀이라고 불리는 핀을 설계하여 자탄에 적용하였다. 우선 자탄의 기본모델을 설정하고, 해당 모델에 대한 자유낙하 하는 천음속(transonic) 조건에서의 전산해석이 수행되었으며 풍동시험을 통해 전산해석 결과를 검증하였다. 기본모델의 경우 요구되는 수준의 높은 항력은 얻었으나 자세 안정성이 확보되지 않았다. 이를 개선하기 위해 그리드핀의 설계변수 중 하나인 웹 두께(web-thickness)를 변경하여 2종의 핀을 추가로 설계하였으며 해당 설계안에 대한 전산해석을 수행하였다. 수행 결과, 웹 두께가 가장 얇은 조건에서 자세 안정성이 가장 우수하게 확보되었으며 항력계수도 큰 값을 유지하였다. 해석 결과를 기반으로 그리드핀 설계를 완료하고, 자탄에 대한 공력자료를 확보하여 이를 토대로 자탄의 탄도를 예측할 수 있는 기반이 마련되었다. 또한, 그리드핀이 다양한 형태의 비행체와 탄에 사용될 수 있을 것으로 기대된다.

A sub-munition which has low aspect ratio does not have flight stability and control of drag force under free-fall condition. In order to satisfy those problems, fin, which is called grid-fin, is designed instead of conventional flight fins and adapted to the sub-munition. The base model of the sub-munition is firstly set and numerical simulation of the model is conducted under transonic condition that is free-fall range of the sub-munition. Wind test is secondly performed to verify the simulation result. The result shows that grid fin adapted sub-munition has high drag force, but the flight stability is still needed. In order to enhance the flight stability, two additional grid-fins are designed which modify web-thickness and numerical simulations of modified models are conducted. As the results, the thinnest web-thickness grid-fin has the highest flight stability and still maintains high drag coefficient. Based on these results, design of grid-fin adapted sub-munition is completed, the path trajectory of the sub-munition can be predicted with acquired aerodynamic datum and it is expected that grid fin can be used to various shape of the flight vehicle and bomb.

키워드

SMROBX_2019_v28n2_23_f0001.png 이미지

Fig. 1. Typical grid fin of the missile and rocket system (Weimorts, 2001; Space X, 2015)

SMROBX_2019_v28n2_23_f0002.png 이미지

Fig. 2. Flow characteristics of a grid fin

SMROBX_2019_v28n2_23_f0003.png 이미지

Fig. 3. Design of the grid-fin adapted sub-munition model (Base model)

SMROBX_2019_v28n2_23_f0004.png 이미지

Fig. 4. Mesh configuration of the domain

SMROBX_2019_v28n2_23_f0005.png 이미지

Fig. 5. Grid-fin adapted sub-munition model for the wind test

SMROBX_2019_v28n2_23_f0006.png 이미지

Fig. 6. Comparison between numerical simulation and wind test result of drag coefficient(Cd)

SMROBX_2019_v28n2_23_f0007.png 이미지

Fig. 7. Wind test results (pitching moment coefficient)

SMROBX_2019_v28n2_23_f0008.png 이미지

Fig 8. Comparison of pitching moment coefficient between numerical simulation and wind test (M=0.9)

SMROBX_2019_v28n2_23_f0009.png 이미지

Fig. 9. Mach contour of the base grid-fin adapted model

SMROBX_2019_v28n2_23_f0010.png 이미지

Fig. 10. Candidates of grid fins (3 types)

SMROBX_2019_v28n2_23_f0011.png 이미지

Fig. 11. Drag coefficient(Cd) under various web-thickness condition

SMROBX_2019_v28n2_23_f0012.png 이미지

Fig. 12. Pitching moment coefficient(Cm) of the grid fin adapted models

SMROBX_2019_v28n2_23_f0013.png 이미지

Fig. 13. Mach contour of the 3 types grid-fin adapted model (M=0.7, α=15°)

SMROBX_2019_v28n2_23_f0014.png 이미지

Fig. 14. Pressure coefficient contour of the 3 types grid-fin adapted model (M=0.7, α=15°)

Table 1. Required conditions for the performance validation

SMROBX_2019_v28n2_23_t0001.png 이미지

Table 2. Critical mach number of the grid-fin adapted model

SMROBX_2019_v28n2_23_t0002.png 이미지

참고문헌

  1. DeSpirito, J., H.L. Edge, W. Paul, S. Jubaraj and P.G.D. Surya (2000) "CFD Analysis of Grid Fins for Maneuvering Missiles", 39st Aerospace Sciences Meeting and Exhibit, Reno, AIAA 2000-0391.
  2. Dikbas, E. (2015) Design of a Grid Fin Aerodynamic Device for Transonic Flight Regime, M.S. Thesis, Middle East Technical University.
  3. Fleeman, E. (2001) Tactical Missile Design, American Institute of Aeronautics and Astronautics, Inc.
  4. ANSYS Inc. (2018) Fluent 19.0 User's Guide
  5. Fournier, E.Y. (2001) "Wind Tunnel Investigation of Grid Fin and Conventional Planar Control Surfaces", 39st Aerospace Sciences Meeting and Exhibit, Reno, AIAA 2001-0256.
  6. Hughson, M.C. and L.B. Eric (2006) "Transonic Aerodynamic Analysis of Lattice Grid Tail Fin Missiles", 24th Applied Aerodynamics Conference, San Francisco, AIAA 2006-3651.
  7. Li, Y., J. Shan, J. Su and Y. Huang (2013) "Numerical simulation on circular-arc grid fin configurations", Applied Mechanics and Materials, 444-445, 342-346. https://doi.org/10.4028/www.scientific.net/AMM.444-445.342
  8. Miller, M.S. and W.D. Washington (1994) "An experimental Investigation of Grid Fin Drag Reduction Techniques", 12th Applied Aerodynamics Conference, Colorado, AIAA 94-1914-CP.
  9. Orthner, K.S. (2004) Aerodynamic Analysis of Lattice Grid Fins in Transonic Flow, M.S. Thesis, Air Force Institute of Technology.
  10. Space X (2015) "Grid Fins" available at http://www.spacex.com/news/2015/08/31/grid-fins
  11. Spalart, P.R. and S.R. Allmaras (1992) "A One-equation Turbulence Model for Aerodynamic Flows", 30st Aerospace Sciences Meeting and Exhibit, Reno, AIAA 92-0439.
  12. Theerthamalai, P. and M. Nagarathinam (1993) "Aerodynamic analysis of grid-fin configurations at supersonic speed", Journal of Spacecraft and Rockets, 43(4), 750-756. https://doi.org/10.2514/1.16741
  13. Washington, W.D. (1993) "Grid-fins-A new concept for missile stability and control", 31st Aerospace Sciences Meeting and Exhibit, Reno, AIAA 93-0035.
  14. Washington, W.D. and M.S. Miller (1993) "Curvature and Leading Edge Sweep Back Effects on Grid Fin Aerodynamics Characteristics", Applied Aerodynamics Conference, Monterey, AIAA 93-3480.
  15. Weimorts (2011) "A MOAB in John Deere Green", available at https://travelforaircraft.wordpress.com/2011/07/22/a-moab-in-john-deere-green/ (Accessed Jan 9. 2018)
  16. Zeng, Y., J. Cai, M. Debiasi and T.L. Chng (2009) "Numerical study on drag reduction for grid-fin configurations", 47th Aerospace Sciences Meeting Including The New Horizon Forum and Aerospace Exposition, Orlado, AIAA 2009-1105.