DOI QR코드

DOI QR Code

Comparison of the Migration and Absorption of Calcium and Magnesium in Apple Leaves Sprayed with Plant Nutrients Prepared by Wet Nano-grinding Technology

습식 나노화 공정기술 적용 식물 영양제를 살포한 사과의 칼슘과 마그네슘 이동 및 흡수율 비교

  • Park, Jae-Ryoung (Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University) ;
  • Kim, Eun-Gyeong (Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University) ;
  • Lee, Seung Hyun (Institute in Natural Science Technolgy) ;
  • Chung, Il Kyung (Department of Biotechnology, Daegu Catholic University) ;
  • Kim, Kyung-Min (Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University)
  • 박재령 (경북대학교 농업생명과학대학 응용생명과학부 식물생명공학전공) ;
  • 김은경 (경북대학교 농업생명과학대학 응용생명과학부 식물생명공학전공) ;
  • 이승현 (NSB기업부설연구소) ;
  • 정일경 (대구가톨릭대학교 생명공학과) ;
  • 김경민 (경북대학교 농업생명과학대학 응용생명과학부 식물생명공학전공)
  • Received : 2019.04.22
  • Accepted : 2019.07.05
  • Published : 2019.07.30

Abstract

In this study, the migration route and the absorption rate of calcium and magnesium in apple leaves were compared and analyzed using plant nutrients prepared by wet nano-grinding technology. The plant nutrients were sprayed onto the leaves to confirm the component content and the movement route of the nanoized calcium and magnesium. At 2, 4, and 8 weeks after the plant nutrient treatment, the apple leaves were divided into petiole, lamina, and side, and SEM and EDS were used to measure the calcium and magnesium contents. The calcium and magnesium contents of the petiole increased from the 4th week after plant nutrient application to 1,115% at the 8th week. The calcium and magnesium contents of the lamina decreased after spraying but increased after 4 weeks. The calcium and magnesium contents increased in the side of the leaves compared to the control, reaching 673% after 4 weeks. The calcium and magnesium contents increased with increasing duration in all plots when compared with the control unsprayed leaves, suggesting that the usually poorly soluble calcium and magnesium were transferred from the petioles to the lamina. The results of this study indicate that improved calcium and magnesium absorption could be obtained in crops other than apples using plant nutrients produced through wet nano-processing technology. This technology is also expected to be applicable to natural products and bioindustries.

본 연구에서는 습식 나노화 공정 기술을 적용하여 제조한 식물영양제를 이용하여 사과 잎에 흡수되는 칼슘과 마그네슘의 이동 경로 및 흡수율을 비교 분석하였다. 습식 나노화 공정을 통해 불용성 칼슘과 마그네슘을 나노화 처리한 식물영양제의 성분 함량 및 이동경로를 확인하기 위하여 식물 영양제 살포 후 2주, 4주 및 8주 경과 후 잎자루, 잎몸, 옆면으로 구분하여 SEM, EDS 촬영을 통해 분석하였다. 잎자루는 식물 영양제 살포 후 4주차부터 증가하여 8주차에서는 1,115%까지 증가했으며, 사과 잎몸의 경우 2주차의 미살포구에 비해 살포 후 칼슘과 마그네슘의 함량이 감소하였으나, 4주 이후부터는 증가하였으며, 4주차의 뒷면 증가율이 539%로 가장 높았다. 또한, 잎몸의 옆면은 미살포구에 비해 살포구 모두 칼슘과 마그네슘 함량이 증가하였는데 특히, 4주차에 673% 증가하여 가장 높은 증가율을 보였다. 시간이 경과함에 따라 모든 살포구가 미살포구에 비해 칼슘, 마그네슘 함량이 점점 증가하여 나노화 식물영양제의 불용성 칼슘과 마그네슘 성분이 사과의 잎자루에서 잎몸까지 이동한 것으로 판단된다. 본 연구 결과를 보았을 때 습식 나노 공정 기술을 통해 제조된 식물영양제를 활용하면 사과 이외의 다른 작물 에서도 칼슘과 마그네슘 흡수 효과를 얻을 수 있을 것으로 판단하였다. 또한, 식물영양제 이외에도 천연물이나 바이오산업에도 나노 공정 기술의 적용이 가능할 것으로 기대된다.

Keywords

SMGHBM_2019_v29n7_769_f0001.png 이미지

Fig. 1. Analysis of Ca2+ and Mg2+ contents in petiole by spraying plant nutrients. The contents of Ca2+ and Mg2+ in petiole was increased by 8% after 2 weeks, 156% after 4 weeks and 1,115% after 8 weeks compared to the control.

SMGHBM_2019_v29n7_769_f0002.png 이미지

Fig. 2. Analysis of Ca2+ and Mg2+ contents in the adaxial and abaxial of apple leaf blades by spraying plant nutrients. At the adaxial of the leaf blade, the content of Ca2+ and Mg2+ increased by 47% in the 2 weeks, 454% in the 4 weeks, and 52% in the 8 weeks, and abaxial of the leaf blade, the content of Ca2+ and Mg2+ increased 48% in the 2 weeks, 539% in the 4 weeks, 13% in the 8 weeks. The contents of Ca2+ and Mg2+ increased the most at 4 weeks after nutrient application.

SMGHBM_2019_v29n7_769_f0003.png 이미지

Fig. 3. Analysis of Ca2+ and Mg2+ contents in the side of apple blades by spraying plant nutrients. The contents of Ca2+ and Mg2+ in the side of apple blades decreased by 36% after weeks compared to the control but increased by 637% after 4 weeks and 376% after 8 weeks.

Table 1. Average particle size according to the time of nano-processing

SMGHBM_2019_v29n7_769_t0001.png 이미지

References

  1. Hwang, T. Y., Son, S. M., Lee, C. Y. and Moon, K. D. 2001. Quality changes of fresh-cut packaged Fuji apples during storage. Kor. J. Food Sci. Technol. 33, 469-476.
  2. Kim, C. J., Kim, K. C., Kim, D. Y., Oh, M. J., Lee, S. K. and Lee, S. O. 1990. Fermentation tenology. Sunjinmuwhasa. Seoul. 79-103.
  3. Kim, D. H. 1993. Basic theory and application of scanning electron microscope. Anal. Sci. Technol. 6, 119-127.
  4. Kim, G. H., Jeon, Y. J., Byun, H. G., Lee, Y. S., Lee, E. H. and Kim, S. K. 1998. Effect of calcium compounds from oyster shell bouind fish skin gelatin peptide in calcium deficient rats. J. Kor. Fish. Soc. 31, 149-159.
  5. Kweon, H. J., Kim, M. J., Lee, J. W., Choi, C., Yoon, T. M. and Kang, I. K. 2012. Effects of aminoethoxyvinylglycine application and heat treatment on fruit quality of 'Fuji' apples during ca storage. Kor. J. Hort. Sci. Technol. 30, 527-533.
  6. Lee, S. H., Lee, S. M., So, S. J., Choi, Y. S., Kim, K. M. and Chung, I. K. 2018. Influence of enzymatic agents on the ginkgo fruit ratio using nano-processing technology. International Journal of Forestry and Horticulture 4, 16-24.
  7. MAF. 2006. "Director-general of investment evaluation and statistics bureau". Agricultural & forestry statistical yearbook. The Ministry of Agriculture and Forestry Kor. p116.
  8. Nano Science Biotech Co Ltd. 2016. The insoluble calcium and magnesium as a active ingredient flower javascript:checkRefBr('', 'next');thinning agent, Kor., Patent registration number 10-1629387.
  9. Park, S. G., Kwon, S. J., Kim, Y. M. and Lee, S. S. 2013. Reaction properties of non-cement mortar using ground granulated blast furnace slag. JKCA 13, 392-399.
  10. Wang, H. J. 1999. Changes of phenolic compounds in korean apple (fuji) during maturation. J. Kor. Soc. Food Sci. Nutr. 12, 364-369.
  11. Yoo, J. G., Kan, B. K., Kim, D. H., Lee, J. W., Lee, D. H., Kweon, H. J., Choi, I. M., Jung, H. Y., Choung, M. G., Choi, D. G. and Kang, I. K. 2016. Effect of flower and fruit thinner on fruit set and fruit quality of 'gamhong' apples. Kor. J. Hort. Sci. Technol. 34, 24-31.
  12. Zhang, M., Zhang, C. J. and Shrestha, S. 2005. Study on the preparation technology of superfine ground powder of agrocybe chaxingu huang. J. Food Eng. 67, 333-337. https://doi.org/10.1016/j.jfoodeng.2004.04.036
  13. Moon, Y. H., Lee, J. H., Ahn, B. K., Choi, I. Y. and Cheong, S. S. 2012. Effects of chitosan on red pepper (capsicum annuum L.) cultivation for eco-friendly agriculture. Kor. J. Soil Sci. 45, 635-641.