Fig. 1. The mean aggregation number to find the reason for the aggregation of Doellingeria scabra.
Fig. 2. The curves of patchiness in two areas of Doellingeria scabra using values of Green index.
Table 1. Spatial patterns of Doellingeria scabra individuals at different sampling quadrat sizes in Mt. Maebong
Table 2. Changes in gathering strength of Doellingeria scabra at different sampling quadrat sizes
Table 3. Clouding or patchiness indices of Doellingeria scabra at different sampling quadrat sizes
Table 4. Spatial autocorrelation coefficients (Moran's I) among plots of Doellingeria scabra for eight distance classes
References
- Arbous, A. G. and Kerrich, J. E. 1951. Accident statistics and the concept of accident proneness. Biometrics 7, 340-342. https://doi.org/10.2307/3001656
- Austin, M. P. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol. Model. 157, 101-118. https://doi.org/10.1016/S0304-3800(02)00205-3
- Chung, T. Y., Eiserich, J. P. and Shibamoto, T. 1993. Volatile compounds isolated from edible Korean chamchwi (Aster scaber Thunb). J. Agric. Food Chem. 41, 1693-1697. https://doi.org/10.1021/jf00034a033
- Clark, P. J. and Evans, F. C. 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445-453. https://doi.org/10.2307/1931034
- Cliff, A. D. and Ord, J. K. 1971. Spatial Autocorrelation, pp. 178, Pion, London, England.
- Dale, M. R. T. 1999. Spatial Pattern Analysis in Plant Ecology, pp. 326, Cambridge: Cambridge University Press, Cambridge, England.
- Eberhardt, W. R. and Eberhardt, L. 1967. Estimating cottontail abundance from livertrapping data. J. Wild. Manage. 31, 87-96. https://doi.org/10.2307/3798362
- Fortin, M. J. and Dale, M. R. T. 2005. Spatial Analysis: A Guide for Ecologists, pp. 356, Cambridge University Press, Cambridge, England.
- Getzin, S. and Wiegand, K. 2007. Asymmetric tree growth at the stand level: random crown patterns and the response to slope. Forest Ecol. Manag. 242, 165-174. https://doi.org/10.1016/j.foreco.2007.01.009
- Greig-Smith, P. 1983. Quantitative Plant Ecology, pp. 359, 3rd ed. Blackwell Scientific, Oxford, USA.
- Green, R. H. 1966. Measurement of non-randomness in spatial distributions. Res. Pop. Ecol. 8, 1-7. https://doi.org/10.1007/BF02524740
- Gustafson, E. J. 1998. Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1, 143-156. https://doi.org/10.1007/s100219900011
- Hines, W. G. S. and Hines, R. J. O. 1979. The Eberhardt index and the detection of non-randomness of spatial point distributions. Biometrika 66, 73-80. https://doi.org/10.1093/biomet/66.1.73
- Johnson, D. J., Beaulieu, W. T., Bever, J. D. and Clay, K. 2012. Conspecific negative density dependence and forest diversity. Science 336, 904-907. https://doi.org/10.1126/science.1220269
- Lian, X., Jiang, Z., Ping, X., Tang, S., Bi, J. and Li, C. 2012. Spatial distribution pattern of the steppe toad-headed lizard (Phrynocephalus frontalis) and its influencing factors. Asian Herpet. Res. 3, 46-51. https://doi.org/10.3724/SP.J.1245.2012.00046
- Lio, J., Bogaert, J. and Nijs, I. 2015. Species interactions determine the spatial mortality patterns emerging in plant communities after extreme events. Sci. Rep. 5, doi: 10.1038/srep11229.
- Lloyd, M. 1967. Mean crowding. J. Anim. Ecol. 36, 1-30. https://doi.org/10.2307/3012
- Moeur, M. 1997. Spatial models of competition and gap dynamics in old-growth Tsuga heterophylla / Thuja plicata forests. Forest Ecol. Manag. 94, 175-186. https://doi.org/10.1016/S0378-1127(96)03976-X
- Moradi-Vajargah, M., Golizadeh, A., Rafiee-Dastjerdi, H., Zalucki, M. P., Hassanpour, M. and Naseri, B. 2011. Population density and spatial distribution pattern of Hypera postica (Coleoptera: Curculionidae) in Ardabil, Iran. Not. Bot. Horti. Agrobo. 39, 42-48 https://doi.org/10.15835/nbha3926381
- Patil, G. P. and Stiteler, W. M. 1974. Concepts of aggregation and their quantification: a critical review with some new results and applications. Res. Popul. Ecol. 15, 238-254. https://doi.org/10.1007/BF02510670
- Plotkin, J. B., Chave, J. and Ashton, P. S. 2002. Cluster analysis of spatial patterns in Malaysian tree species. Am. Nat. 160, 629-644. https://doi.org/10.1086/342823
- Pommerening, A. and Sarkka, A. 2013. What mark variograms tell about spatial plant interactions. Ecol. Model. 251, 64-72. https://doi.org/10.1016/j.ecolmodel.2012.12.009
- Shaukat, S. S., Aziz, S., Ahmed, W. and Shahzad, A. 2012. Population structure, spatial pattern and reproductive capacity of two semi-desert undershrubs Senna holosericea and Fagonia indica in southern Sindh, Pakistan. Pak. J. Bot. 44, 1-9.
- Sokal, R. R. and Oden, N. L. 1978a. Spatial autocorrelation in biology 1. Methodol. Biol. J. Lin. Soc. 10, 199-228. https://doi.org/10.1111/j.1095-8312.1978.tb00013.x
- Sokal, R. R. and Oden, N. L. 1978b. Spatial autocorrelation in biology 2. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Lin. Soc. 10, 229-249. https://doi.org/10.1111/j.1095-8312.1978.tb00014.x
- Stachowicz, J. J. 2001. Mutualism, facilitation, and the structure of ecological communities. Bioscience 51, 235-246. https://doi.org/10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2
- Thiruvengadam, M., Praveen, N., Yu, B., Kim, S. and Chung, I. 2014. Polyphenol composition and antioxidant capacity from different extracts of Aster scaber. Acta Biol. Hung. 65, 144-155. https://doi.org/10.1556/ABiol.65.2014.2.3
- Zhang, Y. T., Li, J. M., Chang, S. L., Li, X. and Lu, J. J. 2012. Spatial distribution pattern of Picea schrenkiana population in the Middle Tianshan Mountains and the relationship with topographic attributes. J. Arid Land 4, 457-468. https://doi.org/10.3724/SP.J.1227.2012.00457